Cargando…
Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae
There are many hypotheses explaining the diversity of colours and patterns found in nature, but they are often difficult to examine empirically. Recent studies show the dark upperside of gliding birds’ wings could reduce drag by decreasing the density of surrounding air. It may therefore be expected...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681726/ https://www.ncbi.nlm.nih.gov/pubmed/36414754 http://dx.doi.org/10.1038/s42003-022-04144-8 |
_version_ | 1784834685598171136 |
---|---|
author | Goumas, Madeleine |
author_facet | Goumas, Madeleine |
author_sort | Goumas, Madeleine |
collection | PubMed |
description | There are many hypotheses explaining the diversity of colours and patterns found in nature, but they are often difficult to examine empirically. Recent studies show the dark upperside of gliding birds’ wings could reduce drag by decreasing the density of surrounding air. It may therefore be expected that species with darker wings have less efficient morphology than their paler counterparts. I conducted an analysis of the Larinae (gulls), which exhibit extreme variation in wing (mantle and wingtip) melanization, to test whether wing loading is a predictor of wing darkness. I found that, for each standard deviation increase in wing loading, mantle darkness is predicted to increase by 1.2 shades on the Kodak grey scale. Wing loading is also positively related to the proportion of black on wingtips. Furthermore, heavier species have lower aspect ratio wings, suggesting that dark wings have evolved to improve the trade-off between maneuverability and long distance flight. |
format | Online Article Text |
id | pubmed-9681726 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-96817262022-11-24 Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae Goumas, Madeleine Commun Biol Article There are many hypotheses explaining the diversity of colours and patterns found in nature, but they are often difficult to examine empirically. Recent studies show the dark upperside of gliding birds’ wings could reduce drag by decreasing the density of surrounding air. It may therefore be expected that species with darker wings have less efficient morphology than their paler counterparts. I conducted an analysis of the Larinae (gulls), which exhibit extreme variation in wing (mantle and wingtip) melanization, to test whether wing loading is a predictor of wing darkness. I found that, for each standard deviation increase in wing loading, mantle darkness is predicted to increase by 1.2 shades on the Kodak grey scale. Wing loading is also positively related to the proportion of black on wingtips. Furthermore, heavier species have lower aspect ratio wings, suggesting that dark wings have evolved to improve the trade-off between maneuverability and long distance flight. Nature Publishing Group UK 2022-11-22 /pmc/articles/PMC9681726/ /pubmed/36414754 http://dx.doi.org/10.1038/s42003-022-04144-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Goumas, Madeleine Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae |
title | Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae |
title_full | Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae |
title_fullStr | Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae |
title_full_unstemmed | Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae |
title_short | Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae |
title_sort | dark wing pigmentation as a mechanism for improved flight efficiency in the larinae |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681726/ https://www.ncbi.nlm.nih.gov/pubmed/36414754 http://dx.doi.org/10.1038/s42003-022-04144-8 |
work_keys_str_mv | AT goumasmadeleine darkwingpigmentationasamechanismforimprovedflightefficiencyinthelarinae |