Cargando…
Mitigating the impact of biased artificial intelligence in emergency decision-making
BACKGROUND: Prior research has shown that artificial intelligence (AI) systems often encode biases against minority subgroups. However, little work has focused on ways to mitigate the harm discriminatory algorithms can cause in high-stakes settings such as medicine. METHODS: In this study, we experi...
Autores principales: | Adam, Hammaad, Balagopalan, Aparna, Alsentzer, Emily, Christia, Fotini, Ghassemi, Marzyeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681767/ https://www.ncbi.nlm.nih.gov/pubmed/36414774 http://dx.doi.org/10.1038/s43856-022-00214-4 |
Ejemplares similares
-
Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations
por: Seyyed-Kalantari, Laleh, et al.
Publicado: (2021) -
Breaking Bias: The Role of Artificial Intelligence in Improving Clinical Decision-Making
por: Brown, Chris, et al.
Publicado: (2023) -
Bias in artificial intelligence algorithms and recommendations for mitigation
por: Nazer, Lama H., et al.
Publicado: (2023) -
Effect of clinical decision support systems on emergency medicine physicians' decision-making: A pilot scenario-based simulation study
por: Assadi, Azadeh, et al.
Publicado: (2022) -
Judging facts, judging norms: Training machine learning models to judge humans requires a modified approach to labeling data
por: Balagopalan, Aparna, et al.
Publicado: (2023)