Cargando…
Transfer learning in hand movement intention detection based on surface electromyography signals
Over the past several years, electromyography (EMG) signals have been used as a natural interface to interact with computers and machines. Recently, deep learning algorithms such as Convolutional Neural Networks (CNNs) have gained interest for decoding the hand movement intention from EMG signals. H...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682172/ https://www.ncbi.nlm.nih.gov/pubmed/36440276 http://dx.doi.org/10.3389/fnins.2022.977328 |
_version_ | 1784834791073382400 |
---|---|
author | Soroushmojdehi, Rahil Javadzadeh, Sina Pedrocchi, Alessandra Gandolla, Marta |
author_facet | Soroushmojdehi, Rahil Javadzadeh, Sina Pedrocchi, Alessandra Gandolla, Marta |
author_sort | Soroushmojdehi, Rahil |
collection | PubMed |
description | Over the past several years, electromyography (EMG) signals have been used as a natural interface to interact with computers and machines. Recently, deep learning algorithms such as Convolutional Neural Networks (CNNs) have gained interest for decoding the hand movement intention from EMG signals. However, deep networks require a large dataset to train appropriately. Creating such a database for a single subject could be very time-consuming. In this study, we addressed this issue from two perspectives: (i) we proposed a subject-transfer framework to use the knowledge learned from other subjects to compensate for a target subject’s limited data; (ii) we proposed a task-transfer framework in which the knowledge learned from a set of basic hand movements is used to classify more complex movements, which include a combination of mentioned basic movements. We introduced two CNN-based architectures for hand movement intention detection and a subject-transfer learning approach. Classifiers are tested on the Nearlab dataset, a sEMG hand/wrist movement dataset including 8 movements and 11 subjects, along with their combination, and on open-source hand sEMG dataset “NinaPro DataBase 2 (DB2).” For the Nearlab database, the subject-transfer learning approach improved the average classification accuracy of the proposed deep classifier from 92.60 to 93.30% when classifier was utilizing 10 other subjects’ data via our proposed framework. For Ninapro DB2 exercise B (17 hand movement classes), this improvement was from 81.43 to 82.87%. Moreover, three stages of analysis in task-transfer approach proved that it is possible to classify combination hand movements using the knowledge learned from a set of basic hand movements with zero, few samples and few seconds of data from the target movement classes. First stage takes advantage of shared muscle synergies to classify combined movements, while second and third stages take advantage of novel algorithms using few-shot learning and fine-tuning to use samples from target domain to further train the classifier trained on the source database. The use of information learned from basic hand movements improved classification accuracy of combined hand movements by 10%. |
format | Online Article Text |
id | pubmed-9682172 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96821722022-11-24 Transfer learning in hand movement intention detection based on surface electromyography signals Soroushmojdehi, Rahil Javadzadeh, Sina Pedrocchi, Alessandra Gandolla, Marta Front Neurosci Neuroscience Over the past several years, electromyography (EMG) signals have been used as a natural interface to interact with computers and machines. Recently, deep learning algorithms such as Convolutional Neural Networks (CNNs) have gained interest for decoding the hand movement intention from EMG signals. However, deep networks require a large dataset to train appropriately. Creating such a database for a single subject could be very time-consuming. In this study, we addressed this issue from two perspectives: (i) we proposed a subject-transfer framework to use the knowledge learned from other subjects to compensate for a target subject’s limited data; (ii) we proposed a task-transfer framework in which the knowledge learned from a set of basic hand movements is used to classify more complex movements, which include a combination of mentioned basic movements. We introduced two CNN-based architectures for hand movement intention detection and a subject-transfer learning approach. Classifiers are tested on the Nearlab dataset, a sEMG hand/wrist movement dataset including 8 movements and 11 subjects, along with their combination, and on open-source hand sEMG dataset “NinaPro DataBase 2 (DB2).” For the Nearlab database, the subject-transfer learning approach improved the average classification accuracy of the proposed deep classifier from 92.60 to 93.30% when classifier was utilizing 10 other subjects’ data via our proposed framework. For Ninapro DB2 exercise B (17 hand movement classes), this improvement was from 81.43 to 82.87%. Moreover, three stages of analysis in task-transfer approach proved that it is possible to classify combination hand movements using the knowledge learned from a set of basic hand movements with zero, few samples and few seconds of data from the target movement classes. First stage takes advantage of shared muscle synergies to classify combined movements, while second and third stages take advantage of novel algorithms using few-shot learning and fine-tuning to use samples from target domain to further train the classifier trained on the source database. The use of information learned from basic hand movements improved classification accuracy of combined hand movements by 10%. Frontiers Media S.A. 2022-11-09 /pmc/articles/PMC9682172/ /pubmed/36440276 http://dx.doi.org/10.3389/fnins.2022.977328 Text en Copyright © 2022 Soroushmojdehi, Javadzadeh, Pedrocchi and Gandolla. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Soroushmojdehi, Rahil Javadzadeh, Sina Pedrocchi, Alessandra Gandolla, Marta Transfer learning in hand movement intention detection based on surface electromyography signals |
title | Transfer learning in hand movement intention detection based on surface electromyography signals |
title_full | Transfer learning in hand movement intention detection based on surface electromyography signals |
title_fullStr | Transfer learning in hand movement intention detection based on surface electromyography signals |
title_full_unstemmed | Transfer learning in hand movement intention detection based on surface electromyography signals |
title_short | Transfer learning in hand movement intention detection based on surface electromyography signals |
title_sort | transfer learning in hand movement intention detection based on surface electromyography signals |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682172/ https://www.ncbi.nlm.nih.gov/pubmed/36440276 http://dx.doi.org/10.3389/fnins.2022.977328 |
work_keys_str_mv | AT soroushmojdehirahil transferlearninginhandmovementintentiondetectionbasedonsurfaceelectromyographysignals AT javadzadehsina transferlearninginhandmovementintentiondetectionbasedonsurfaceelectromyographysignals AT pedrocchialessandra transferlearninginhandmovementintentiondetectionbasedonsurfaceelectromyographysignals AT gandollamarta transferlearninginhandmovementintentiondetectionbasedonsurfaceelectromyographysignals |