Cargando…
Transfer learning in hand movement intention detection based on surface electromyography signals
Over the past several years, electromyography (EMG) signals have been used as a natural interface to interact with computers and machines. Recently, deep learning algorithms such as Convolutional Neural Networks (CNNs) have gained interest for decoding the hand movement intention from EMG signals. H...
Autores principales: | Soroushmojdehi, Rahil, Javadzadeh, Sina, Pedrocchi, Alessandra, Gandolla, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682172/ https://www.ncbi.nlm.nih.gov/pubmed/36440276 http://dx.doi.org/10.3389/fnins.2022.977328 |
Ejemplares similares
-
Robotic Exoskeleton Gait Training in Stroke: An Electromyography-Based Evaluation
por: Longatelli, Valeria, et al.
Publicado: (2021) -
Artificial neural network EMG classifier for functional hand grasp
movements prediction
por: Gandolla, Marta, et al.
Publicado: (2016) -
Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands
por: Atzori, Manfredo, et al.
Publicado: (2016) -
Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation
por: Dalla Gasperina, Stefano, et al.
Publicado: (2022) -
Gesture Recognition Using Surface Electromyography and Deep Learning for Prostheses Hand: State-of-the-Art, Challenges, and Future
por: Li, Wei, et al.
Publicado: (2021)