Cargando…
Multi-dimensional patient acuity estimation with longitudinal EHR tokenization and flexible transformer networks
Transformer model architectures have revolutionized the natural language processing (NLP) domain and continue to produce state-of-the-art results in text-based applications. Prior to the emergence of transformers, traditional NLP models such as recurrent and convolutional neural networks demonstrate...
Autores principales: | Shickel, Benjamin, Silva, Brandon, Ozrazgat-Baslanti, Tezcan, Ren, Yuanfang, Khezeli, Kia, Guan, Ziyuan, Tighe, Patrick J., Bihorac, Azra, Rashidi, Parisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682245/ https://www.ncbi.nlm.nih.gov/pubmed/36440460 http://dx.doi.org/10.3389/fdgth.2022.1029191 |
Ejemplares similares
-
Deep Multi-Modal Transfer Learning for Augmented Patient Acuity Assessment in the Intelligent ICU
por: Shickel, Benjamin, et al.
Publicado: (2021) -
DeepSOFA: A Continuous Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning
por: Shickel, Benjamin, et al.
Publicado: (2019) -
Potentials and Challenges of Pervasive Sensing in the Intensive Care Unit
por: Davoudi, Anis, et al.
Publicado: (2022) -
Clinical courses of acute kidney injury in hospitalized patients: a multistate analysis
por: Adiyeke, Esra, et al.
Publicado: (2023) -
Physiologic signatures within six hours of hospitalization identify acute illness phenotypes
por: Ren, Yuanfang, et al.
Publicado: (2022)