Cargando…
Application of Gaussian process regression as a surrogate modeling method to assess the dynamics of COVID-19 propagation
In this research, we aimed to assess the possibility of using surrogate modeling methods to replace time-consuming calculations related to modeling of COVID-19 dynamics. The Gaussian process regression (GPR) was used as a surrogate to replace detailed simulations by a COVID-19 multiagent model. Expe...
Autores principales: | Matveeva, Alexandra, Leonenko, Vasiliy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682405/ https://www.ncbi.nlm.nih.gov/pubmed/36437869 http://dx.doi.org/10.1016/j.procs.2022.11.018 |
Ejemplares similares
-
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Lightweight Workload Fingerprinting Localization Using Affinity Propagation Clustering and Gaussian Process Regression
por: Subedi, Santosh, et al.
Publicado: (2018) -
Surrogates: Gaussian process modeling, design, and optimization for the applied sciences
por: Gramacy, Robert B
Publicado: (2020) -
The pitfalls of using Gaussian Process Regression for normative modeling
por: Xu, Bohan, et al.
Publicado: (2021) -
Gaussian Process Regression Plus Method for Localization Reliability Improvement
por: Liu, Kehan, et al.
Publicado: (2016)