Cargando…
DLBLS_SS: protein secondary structure prediction using deep learning and broad learning system
Protein secondary structure prediction (PSSP) is not only beneficial to the study of protein structure and function but also to the development of drugs. As a challenging task in computational biology, experimental methods for PSSP are time-consuming and expensive. In this paper, we propose a novel...
Autores principales: | Yuan, Lu, Hu, Xiaopei, Ma, Yuming, Liu, Yihui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682407/ https://www.ncbi.nlm.nih.gov/pubmed/36505696 http://dx.doi.org/10.1039/d2ra06433b |
Ejemplares similares
-
Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory
por: Yuan, Lu, et al.
Publicado: (2023) -
Deep Learning for Deep Chemistry: Optimizing the Prediction of Chemical Patterns
por: Cova, Tânia F. G. G., et al.
Publicado: (2019) -
Explainable Deep Hypergraph Learning Modeling the Peptide Secondary Structure Prediction
por: Jiang, Yi, et al.
Publicado: (2023) -
Protein Secondary Structure Prediction Based on Data Partition and Semi-Random Subspace Method
por: Ma, Yuming, et al.
Publicado: (2018) -
Caveats to Deep Learning Approaches to RNA Secondary Structure Prediction
por: Flamm , Christoph, et al.
Publicado: (2022)