Cargando…
Down-regulation of BMAL1 by MiR-494-3p Promotes Hepatocellular Carcinoma Growth and Metastasis by Increasing GPAM-mediated Lipid Biosynthesis
The circadian clock confers daily rhythmicity to many crucial biological processes and behaviors and its disruption is closely associated with carcinogenesis in several types of cancer. Brain and muscle arnt-like protein 1 (BMAL1) is a core circadian rhythm component in mammals and its dysregulation...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682529/ https://www.ncbi.nlm.nih.gov/pubmed/36439870 http://dx.doi.org/10.7150/ijbs.74951 |
_version_ | 1784834871484481536 |
---|---|
author | Yang, Yi Yang, Tao Zhao, Zifeng Zhang, Hongxin Yuan, Peng Wang, Gang Zhao, Zheng An, Jiaze Lyu, Zhuomin Xing, Jinliang Li, Jibin |
author_facet | Yang, Yi Yang, Tao Zhao, Zifeng Zhang, Hongxin Yuan, Peng Wang, Gang Zhao, Zheng An, Jiaze Lyu, Zhuomin Xing, Jinliang Li, Jibin |
author_sort | Yang, Yi |
collection | PubMed |
description | The circadian clock confers daily rhythmicity to many crucial biological processes and behaviors and its disruption is closely associated with carcinogenesis in several types of cancer. Brain and muscle arnt-like protein 1 (BMAL1) is a core circadian rhythm component in mammals and its dysregulation has been shown to contribute to aberrant metabolism in human diseases. However, the biological functions of BMAL1, especially its involvement in aberrant lipid metabolism in hepatocellular carcinoma (HCC), remain elusive. In the present study, we found that BMAL1 was frequently down-regulated in HCC cells mainly due to the up-regulation of miR-494-3p. Down-regulation of BMAL1 was significantly associated with poor survival in HCC patients. BMAL1 down-regulation promoted HCC cell growth and metastasis both in vitro and in vivo. Mechanistically, through cooperating with EZH2, BMAL1 transcriptionally suppressed the expression of glycerol-3-phosphate acyltransferase mitochondrial (GPAM), a key enzyme involved in the regulation of lipid biosynthesis, leading to reduced levels lysophosphatidic acid (LPA), which have long been known as mediator of oncogenesis. Particularly, treatment with SR8278, an activator of BMAL1, exhibited a therapeutic effect on HCC in vitro and in vivo. In conclusion, BMAL1 plays a critical anti-oncogenic role in HCC, providing strong research evidence for BMAL1 as a prospective target for HCC therapy. |
format | Online Article Text |
id | pubmed-9682529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-96825292022-11-25 Down-regulation of BMAL1 by MiR-494-3p Promotes Hepatocellular Carcinoma Growth and Metastasis by Increasing GPAM-mediated Lipid Biosynthesis Yang, Yi Yang, Tao Zhao, Zifeng Zhang, Hongxin Yuan, Peng Wang, Gang Zhao, Zheng An, Jiaze Lyu, Zhuomin Xing, Jinliang Li, Jibin Int J Biol Sci Research Paper The circadian clock confers daily rhythmicity to many crucial biological processes and behaviors and its disruption is closely associated with carcinogenesis in several types of cancer. Brain and muscle arnt-like protein 1 (BMAL1) is a core circadian rhythm component in mammals and its dysregulation has been shown to contribute to aberrant metabolism in human diseases. However, the biological functions of BMAL1, especially its involvement in aberrant lipid metabolism in hepatocellular carcinoma (HCC), remain elusive. In the present study, we found that BMAL1 was frequently down-regulated in HCC cells mainly due to the up-regulation of miR-494-3p. Down-regulation of BMAL1 was significantly associated with poor survival in HCC patients. BMAL1 down-regulation promoted HCC cell growth and metastasis both in vitro and in vivo. Mechanistically, through cooperating with EZH2, BMAL1 transcriptionally suppressed the expression of glycerol-3-phosphate acyltransferase mitochondrial (GPAM), a key enzyme involved in the regulation of lipid biosynthesis, leading to reduced levels lysophosphatidic acid (LPA), which have long been known as mediator of oncogenesis. Particularly, treatment with SR8278, an activator of BMAL1, exhibited a therapeutic effect on HCC in vitro and in vivo. In conclusion, BMAL1 plays a critical anti-oncogenic role in HCC, providing strong research evidence for BMAL1 as a prospective target for HCC therapy. Ivyspring International Publisher 2022-10-18 /pmc/articles/PMC9682529/ /pubmed/36439870 http://dx.doi.org/10.7150/ijbs.74951 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Yang, Yi Yang, Tao Zhao, Zifeng Zhang, Hongxin Yuan, Peng Wang, Gang Zhao, Zheng An, Jiaze Lyu, Zhuomin Xing, Jinliang Li, Jibin Down-regulation of BMAL1 by MiR-494-3p Promotes Hepatocellular Carcinoma Growth and Metastasis by Increasing GPAM-mediated Lipid Biosynthesis |
title | Down-regulation of BMAL1 by MiR-494-3p Promotes Hepatocellular Carcinoma Growth and Metastasis by Increasing GPAM-mediated Lipid Biosynthesis |
title_full | Down-regulation of BMAL1 by MiR-494-3p Promotes Hepatocellular Carcinoma Growth and Metastasis by Increasing GPAM-mediated Lipid Biosynthesis |
title_fullStr | Down-regulation of BMAL1 by MiR-494-3p Promotes Hepatocellular Carcinoma Growth and Metastasis by Increasing GPAM-mediated Lipid Biosynthesis |
title_full_unstemmed | Down-regulation of BMAL1 by MiR-494-3p Promotes Hepatocellular Carcinoma Growth and Metastasis by Increasing GPAM-mediated Lipid Biosynthesis |
title_short | Down-regulation of BMAL1 by MiR-494-3p Promotes Hepatocellular Carcinoma Growth and Metastasis by Increasing GPAM-mediated Lipid Biosynthesis |
title_sort | down-regulation of bmal1 by mir-494-3p promotes hepatocellular carcinoma growth and metastasis by increasing gpam-mediated lipid biosynthesis |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682529/ https://www.ncbi.nlm.nih.gov/pubmed/36439870 http://dx.doi.org/10.7150/ijbs.74951 |
work_keys_str_mv | AT yangyi downregulationofbmal1bymir4943ppromoteshepatocellularcarcinomagrowthandmetastasisbyincreasinggpammediatedlipidbiosynthesis AT yangtao downregulationofbmal1bymir4943ppromoteshepatocellularcarcinomagrowthandmetastasisbyincreasinggpammediatedlipidbiosynthesis AT zhaozifeng downregulationofbmal1bymir4943ppromoteshepatocellularcarcinomagrowthandmetastasisbyincreasinggpammediatedlipidbiosynthesis AT zhanghongxin downregulationofbmal1bymir4943ppromoteshepatocellularcarcinomagrowthandmetastasisbyincreasinggpammediatedlipidbiosynthesis AT yuanpeng downregulationofbmal1bymir4943ppromoteshepatocellularcarcinomagrowthandmetastasisbyincreasinggpammediatedlipidbiosynthesis AT wanggang downregulationofbmal1bymir4943ppromoteshepatocellularcarcinomagrowthandmetastasisbyincreasinggpammediatedlipidbiosynthesis AT zhaozheng downregulationofbmal1bymir4943ppromoteshepatocellularcarcinomagrowthandmetastasisbyincreasinggpammediatedlipidbiosynthesis AT anjiaze downregulationofbmal1bymir4943ppromoteshepatocellularcarcinomagrowthandmetastasisbyincreasinggpammediatedlipidbiosynthesis AT lyuzhuomin downregulationofbmal1bymir4943ppromoteshepatocellularcarcinomagrowthandmetastasisbyincreasinggpammediatedlipidbiosynthesis AT xingjinliang downregulationofbmal1bymir4943ppromoteshepatocellularcarcinomagrowthandmetastasisbyincreasinggpammediatedlipidbiosynthesis AT lijibin downregulationofbmal1bymir4943ppromoteshepatocellularcarcinomagrowthandmetastasisbyincreasinggpammediatedlipidbiosynthesis |