Cargando…
Key concepts, common pitfalls, and best practices in artificial intelligence and machine learning: focus on radiomics
Artificial intelligence (AI) and machine learning (ML) are increasingly used in radiology research to deal with large and complex imaging data sets. Nowadays, ML tools have become easily accessible to anyone. Such a low threshold to accessibility might lead to inappropriate usage and misinterpretati...
Autor principal: | Koçak, Burak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Turkish Society of Radiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682557/ https://www.ncbi.nlm.nih.gov/pubmed/36218149 http://dx.doi.org/10.5152/dir.2022.211297 |
Ejemplares similares
-
Must-have Qualities of Clinical Research on Artificial Intelligence and Machine Learning
por: Koçak, Burak, et al.
Publicado: (2023) -
Forecast evaluation for data scientists: common pitfalls and best practices
por: Hewamalage, Hansika, et al.
Publicado: (2022) -
Evaluating machine learning models: a beginner's guide to key concepts and pitfalls
por: Zheng, Alice
Publicado: (2015) -
Radiomics, machine learning, and artificial intelligence—what the neuroradiologist needs to know
por: Wagner, Matthias W., et al.
Publicado: (2021) -
Experimental phasing: best practice and pitfalls
por: McCoy, Airlie J., et al.
Publicado: (2010)