Cargando…
Evaporation-driven liquid flow in sessile droplets
The evaporation of a sessile droplet spontaneously induces an internal capillary liquid flow. The surface-tension driven minimisation of surface area and/or surface-tension differences at the liquid–gas interface caused by evaporation-induced temperature or chemical gradients set the liquid into mot...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682619/ https://www.ncbi.nlm.nih.gov/pubmed/36342336 http://dx.doi.org/10.1039/d2sm00931e |
_version_ | 1784834889190735872 |
---|---|
author | Gelderblom, Hanneke Diddens, Christian Marin, Alvaro |
author_facet | Gelderblom, Hanneke Diddens, Christian Marin, Alvaro |
author_sort | Gelderblom, Hanneke |
collection | PubMed |
description | The evaporation of a sessile droplet spontaneously induces an internal capillary liquid flow. The surface-tension driven minimisation of surface area and/or surface-tension differences at the liquid–gas interface caused by evaporation-induced temperature or chemical gradients set the liquid into motion. This flow drags along suspended material and is one of the keys to control the material deposition in the stain that is left behind by a drying droplet. Applications of this principle range from the control of stain formation in the printing and coating industry, to the analysis of DNA, to forensic and medical research on blood stains, and to the use of evaporation-driven self-assembly for nanotechnology. Therefore, the evaporation of sessile droplets attracts an enormous interest from not only the fluid dynamics, but also the soft matter, chemistry, biology, engineering, nanotechnology and mathematics communities. As a consequence of this broad interest, knowledge on evaporation-driven flows in drying droplets has remained scattered among the different fields, leading to various misconceptions and misinterpretations. In this review we aim to unify these views, and reflect on the current understanding of evaporation-driven liquid flows in sessile droplets in the light of the most recent experimental and theoretical advances. In addition, we outline open questions and indicate promising directions for future research. |
format | Online Article Text |
id | pubmed-9682619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-96826192022-12-08 Evaporation-driven liquid flow in sessile droplets Gelderblom, Hanneke Diddens, Christian Marin, Alvaro Soft Matter Chemistry The evaporation of a sessile droplet spontaneously induces an internal capillary liquid flow. The surface-tension driven minimisation of surface area and/or surface-tension differences at the liquid–gas interface caused by evaporation-induced temperature or chemical gradients set the liquid into motion. This flow drags along suspended material and is one of the keys to control the material deposition in the stain that is left behind by a drying droplet. Applications of this principle range from the control of stain formation in the printing and coating industry, to the analysis of DNA, to forensic and medical research on blood stains, and to the use of evaporation-driven self-assembly for nanotechnology. Therefore, the evaporation of sessile droplets attracts an enormous interest from not only the fluid dynamics, but also the soft matter, chemistry, biology, engineering, nanotechnology and mathematics communities. As a consequence of this broad interest, knowledge on evaporation-driven flows in drying droplets has remained scattered among the different fields, leading to various misconceptions and misinterpretations. In this review we aim to unify these views, and reflect on the current understanding of evaporation-driven liquid flows in sessile droplets in the light of the most recent experimental and theoretical advances. In addition, we outline open questions and indicate promising directions for future research. The Royal Society of Chemistry 2022-10-31 /pmc/articles/PMC9682619/ /pubmed/36342336 http://dx.doi.org/10.1039/d2sm00931e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Gelderblom, Hanneke Diddens, Christian Marin, Alvaro Evaporation-driven liquid flow in sessile droplets |
title | Evaporation-driven liquid flow in sessile droplets |
title_full | Evaporation-driven liquid flow in sessile droplets |
title_fullStr | Evaporation-driven liquid flow in sessile droplets |
title_full_unstemmed | Evaporation-driven liquid flow in sessile droplets |
title_short | Evaporation-driven liquid flow in sessile droplets |
title_sort | evaporation-driven liquid flow in sessile droplets |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682619/ https://www.ncbi.nlm.nih.gov/pubmed/36342336 http://dx.doi.org/10.1039/d2sm00931e |
work_keys_str_mv | AT gelderblomhanneke evaporationdrivenliquidflowinsessiledroplets AT diddenschristian evaporationdrivenliquidflowinsessiledroplets AT marinalvaro evaporationdrivenliquidflowinsessiledroplets |