Cargando…
BioByGANS: biomedical named entity recognition by fusing contextual and syntactic features through graph attention network in node classification framework
BACKGROUND: Automatic and accurate recognition of various biomedical named entities from literature is an important task of biomedical text mining, which is the foundation of extracting biomedical knowledge from unstructured texts into structured formats. Using the sequence labeling framework and de...
Autores principales: | Zheng, Xiangwen, Du, Haijian, Luo, Xiaowei, Tong, Fan, Song, Wei, Zhao, Dongsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682683/ https://www.ncbi.nlm.nih.gov/pubmed/36418937 http://dx.doi.org/10.1186/s12859-022-05051-9 |
Ejemplares similares
-
Improving biomedical named entity recognition with syntactic information
por: Tian, Yuanhe, et al.
Publicado: (2020) -
Biomedical named entity recognition using deep neural networks with contextual information
por: Cho, Hyejin, et al.
Publicado: (2019) -
Annotating patient clinical records with syntactic chunks and named entities: the Harvey Corpus
por: Savkov, Aleksandar, et al.
Publicado: (2016) -
NEREL-BIO: a dataset of biomedical abstracts annotated with nested named entities
por: Loukachevitch, Natalia, et al.
Publicado: (2023) -
Contextualized Embeddings in Named-Entity Recognition: An Empirical Study on Generalization
por: Taillé, Bruno, et al.
Publicado: (2020)