Cargando…

Potential links between COVID-19 and periodontitis: a bioinformatic analysis based on GEO datasets

BACKGROUND: 2019 Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has already had a serious influence on human existence, causing a huge public health concern for countries all around the world....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Churen, Sun, Yuzhe, Xu, Min, Shu, Chang, Yue, Zhaoguo, Hou, Jianxia, Ou, Dongchen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682728/
https://www.ncbi.nlm.nih.gov/pubmed/36414950
http://dx.doi.org/10.1186/s12903-022-02435-4
Descripción
Sumario:BACKGROUND: 2019 Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has already had a serious influence on human existence, causing a huge public health concern for countries all around the world. Because SARS-CoV-2 infection can be spread by contact with the oral cavity, the link between oral illness and COVID-19 is gaining traction. Through bioinformatics approaches, we explored the possible molecular mechanisms linking the COVID-19 and periodontitis to provide the basis and direction for future research. METHODS: Transcriptomic data from blood samples of patients with COVID-19 and periodontitis was downloaded from the Gene Expression Omnibus database. The shared differentially expressed genes were identified. The analysis of Gene Ontology, Kyoto Encyclopedia of Genesand Genomes pathway, and protein–protein interaction network was conducted for the shared differentially expressed genes. Top 5 hub genes were selected through Maximal Clique Centrality algorithm. Then mRNA-miRNA network of the hub genes was established based on miRDB database, miRTarbase database and Targetscan database. The Least absolute shrinkage and selection operator regression analysis was used to discover possible biomarkers, which were then investigated in relation to immune-related genes. RESULTS: Fifty-six shared genes were identified through differential expression analysis in COVID-19 and periodontitis. The function of these genes was enriched in regulation of hormone secretion, regulation of secretion by cell. Myozenin 2 was identified through Least absolute shrinkage and selection operator regression Analysis, which was down-regulated in both COVID-19 and periodontitis. There was a positive correlation between Myozenin 2 and the biomarker of activated B cell, memory B cell, effector memory CD4 T cell, Type 17 helper cell, T follicular helper cell and Type 2 helper cell. CONCLUSION: By bioinformatics analysis, Myozenin 2 is predicted to correlate to the pathogenesis and immune infiltrating of COVID-19 and periodontitis. However, more clinical and experimental researches are needed to validate the function of Myozenin 2. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12903-022-02435-4.