Cargando…

Integration of multiparameter flow cytometry score improves prognostic stratification provided by standard models in primary myelofibrosis

Prognostic modeling in myelofibrosis (MF) has classically pursued the integration of informative clinical and hematological parameters to separate patients' categories with different outcomes. Modern stratification includes also genetic data from karyotype and mutations. However, some poorly st...

Descripción completa

Detalles Bibliográficos
Autores principales: Mannelli, Francesco, Bencini, Sara, Coltro, Giacomo, Loscocco, Giuseppe G., Peruzzi, Benedetta, Rotunno, Giada, Maccari, Chiara, Gesullo, Francesca, Borella, Miriam, Paoli, Chiara, Caporale, Roberto, Mannarelli, Carmela, Annunziato, Francesco, Guglielmelli, Paola, Vannucchi, Alessandro M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682857/
https://www.ncbi.nlm.nih.gov/pubmed/35338671
http://dx.doi.org/10.1002/ajh.26548
_version_ 1784834948613537792
author Mannelli, Francesco
Bencini, Sara
Coltro, Giacomo
Loscocco, Giuseppe G.
Peruzzi, Benedetta
Rotunno, Giada
Maccari, Chiara
Gesullo, Francesca
Borella, Miriam
Paoli, Chiara
Caporale, Roberto
Mannarelli, Carmela
Annunziato, Francesco
Guglielmelli, Paola
Vannucchi, Alessandro M.
author_facet Mannelli, Francesco
Bencini, Sara
Coltro, Giacomo
Loscocco, Giuseppe G.
Peruzzi, Benedetta
Rotunno, Giada
Maccari, Chiara
Gesullo, Francesca
Borella, Miriam
Paoli, Chiara
Caporale, Roberto
Mannarelli, Carmela
Annunziato, Francesco
Guglielmelli, Paola
Vannucchi, Alessandro M.
author_sort Mannelli, Francesco
collection PubMed
description Prognostic modeling in myelofibrosis (MF) has classically pursued the integration of informative clinical and hematological parameters to separate patients' categories with different outcomes. Modern stratification includes also genetic data from karyotype and mutations. However, some poorly standardized variables, as peripheral blood (PB) blast count by morphology, are still included. In this study, we used multiparameter flow cytometry (MFC) with the aim of improving performance of existing scores. We studied 363 MF patients with available MFC files for PB CD34+ cells count determination at diagnosis. We adapted Ogata score to MF context including 2 parameters: absolute CD34+ cells count (/μL) and granulocytes to lymphocytes SSC ratio. A score of 1 was attributed to above‐threshold values of each parameter. Accordingly, patients were categorized as MFC(low) (score = 0, 62.0%), MFC(int) (score = 1, 29.5%), and MFC(high) (score = 2, 8.5%). MFC(low) had significantly longer median OS (not reached) compared to MFC(int) (55 months) and MFC(high) (19 months). We integrated MFC into established models as a substitute of morphological PB blasts count. Patients were reclassified according to MFC‐enhanced scores, and concordance (C‐) indexes were compared. As regards IPSS, C‐indexes were 0.67 and 0.74 for standard and MFC‐enhanced model, respectively (Z score − 3.82; p = 0.0001). MFC‐enhanced MIPSS70+ model in PMF patients yielded a C‐index of 0.78, outperforming its standard counterpart (C‐index 0.73; Z score − 2.88, p = 0.004). Our data suggest that the incorporation of MFC‐derived parameters, easily attainable from standard assay used for CD34+ cells determination, might help to refine the current prognostic stratification models in myelofibrosis.
format Online
Article
Text
id pubmed-9682857
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-96828572022-11-25 Integration of multiparameter flow cytometry score improves prognostic stratification provided by standard models in primary myelofibrosis Mannelli, Francesco Bencini, Sara Coltro, Giacomo Loscocco, Giuseppe G. Peruzzi, Benedetta Rotunno, Giada Maccari, Chiara Gesullo, Francesca Borella, Miriam Paoli, Chiara Caporale, Roberto Mannarelli, Carmela Annunziato, Francesco Guglielmelli, Paola Vannucchi, Alessandro M. Am J Hematol Research Articles Prognostic modeling in myelofibrosis (MF) has classically pursued the integration of informative clinical and hematological parameters to separate patients' categories with different outcomes. Modern stratification includes also genetic data from karyotype and mutations. However, some poorly standardized variables, as peripheral blood (PB) blast count by morphology, are still included. In this study, we used multiparameter flow cytometry (MFC) with the aim of improving performance of existing scores. We studied 363 MF patients with available MFC files for PB CD34+ cells count determination at diagnosis. We adapted Ogata score to MF context including 2 parameters: absolute CD34+ cells count (/μL) and granulocytes to lymphocytes SSC ratio. A score of 1 was attributed to above‐threshold values of each parameter. Accordingly, patients were categorized as MFC(low) (score = 0, 62.0%), MFC(int) (score = 1, 29.5%), and MFC(high) (score = 2, 8.5%). MFC(low) had significantly longer median OS (not reached) compared to MFC(int) (55 months) and MFC(high) (19 months). We integrated MFC into established models as a substitute of morphological PB blasts count. Patients were reclassified according to MFC‐enhanced scores, and concordance (C‐) indexes were compared. As regards IPSS, C‐indexes were 0.67 and 0.74 for standard and MFC‐enhanced model, respectively (Z score − 3.82; p = 0.0001). MFC‐enhanced MIPSS70+ model in PMF patients yielded a C‐index of 0.78, outperforming its standard counterpart (C‐index 0.73; Z score − 2.88, p = 0.004). Our data suggest that the incorporation of MFC‐derived parameters, easily attainable from standard assay used for CD34+ cells determination, might help to refine the current prognostic stratification models in myelofibrosis. John Wiley & Sons, Inc. 2022-03-31 2022-07 /pmc/articles/PMC9682857/ /pubmed/35338671 http://dx.doi.org/10.1002/ajh.26548 Text en © 2022 The Authors. American Journal of Hematology published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Mannelli, Francesco
Bencini, Sara
Coltro, Giacomo
Loscocco, Giuseppe G.
Peruzzi, Benedetta
Rotunno, Giada
Maccari, Chiara
Gesullo, Francesca
Borella, Miriam
Paoli, Chiara
Caporale, Roberto
Mannarelli, Carmela
Annunziato, Francesco
Guglielmelli, Paola
Vannucchi, Alessandro M.
Integration of multiparameter flow cytometry score improves prognostic stratification provided by standard models in primary myelofibrosis
title Integration of multiparameter flow cytometry score improves prognostic stratification provided by standard models in primary myelofibrosis
title_full Integration of multiparameter flow cytometry score improves prognostic stratification provided by standard models in primary myelofibrosis
title_fullStr Integration of multiparameter flow cytometry score improves prognostic stratification provided by standard models in primary myelofibrosis
title_full_unstemmed Integration of multiparameter flow cytometry score improves prognostic stratification provided by standard models in primary myelofibrosis
title_short Integration of multiparameter flow cytometry score improves prognostic stratification provided by standard models in primary myelofibrosis
title_sort integration of multiparameter flow cytometry score improves prognostic stratification provided by standard models in primary myelofibrosis
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682857/
https://www.ncbi.nlm.nih.gov/pubmed/35338671
http://dx.doi.org/10.1002/ajh.26548
work_keys_str_mv AT mannellifrancesco integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT bencinisara integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT coltrogiacomo integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT loscoccogiuseppeg integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT peruzzibenedetta integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT rotunnogiada integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT maccarichiara integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT gesullofrancesca integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT borellamiriam integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT paolichiara integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT caporaleroberto integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT mannarellicarmela integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT annunziatofrancesco integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT guglielmellipaola integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis
AT vannucchialessandrom integrationofmultiparameterflowcytometryscoreimprovesprognosticstratificationprovidedbystandardmodelsinprimarymyelofibrosis