Cargando…
A room-temperature antiferroelectric in hybrid perovskite enables highly efficient energy storage at low electric fields
Molecular antiferroelectrics (AFEs) have taken a booming position in the miniaturization of energy storage devices due to their low critical electric fields. However, regarding intrinsic competitions between dipolar interaction and steric hindrance, it is a challenge to exploit room-temperature mole...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682916/ https://www.ncbi.nlm.nih.gov/pubmed/36507183 http://dx.doi.org/10.1039/d2sc05285g |
Sumario: | Molecular antiferroelectrics (AFEs) have taken a booming position in the miniaturization of energy storage devices due to their low critical electric fields. However, regarding intrinsic competitions between dipolar interaction and steric hindrance, it is a challenge to exploit room-temperature molecular AFEs with high energy storage efficiency. Here, we present a new 2D hybrid perovskite-type AFE, (i-BA)(2)(FA)Pb(2)Br(7) (1), which shows ultrahigh energy storage efficiencies at room temperature. Most strikingly, the typical double P–E hysteresis loops afford an ultrahigh storage efficiency up to ∼91% at low critical electric fields (E(cr) = 41 kV cm(−1)); this E(cr) value is much lower than those of state-of-the-art AFE oxides, revealing the potential of 1 for miniaturized energy-storage devices. In terms of the energy storage mechanism, the dynamic ordering and antiparallel reorientation of organic cations trigger its AFE-type phase transition at 303 K, thus giving a large spontaneous electric polarization of ∼3.7 μC cm(−2), while the increasement of steric hindrance of the organic branched-chain i-BA(+) spacer cations stabilizes its antipolar sublattices. To the best of our knowledge, this exploration of achieving ultrahigh energy storage efficiency at such a low critical electric field is unprecedented in the AFE family, which paves a pathway for miniaturized energy storage applications. |
---|