Cargando…
Analyzing Public Conversations About Heart Disease and Heart Health on Facebook From 2016 to 2021: Retrospective Observational Study Applying Latent Dirichlet Allocation Topic Modeling
BACKGROUND: Heart disease continues to be the leading cause of death in men and women in the United States. The COVID-19 pandemic has further led to increases in various long-term cardiovascular complications. OBJECTIVE: This study analyzed public conversations related to heart disease and heart hea...
Autores principales: | Xue, Haoning, Zhang, Jingwen, Sagae, Kenji, Nishimine, Brian, Fukuoka, Yoshimi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683528/ https://www.ncbi.nlm.nih.gov/pubmed/36318640 http://dx.doi.org/10.2196/40764 |
Ejemplares similares
-
Context-Aware Latent Dirichlet Allocation for Topic Segmentation
por: Li, Wenbo, et al.
Publicado: (2020) -
A Topic Modeling for ALICE'S Log Messages using Latent Dirichlet Allocation
por: Prayurahong, Pattapon, et al.
Publicado: (2022) -
Latent Dirichlet Allocation modeling of environmental microbiomes
por: Kim, Anastasiia, et al.
Publicado: (2023) -
Identifying Topics and Evolutionary Trends of Literature on Brain Metastases Using Latent Dirichlet Allocation
por: Chen, Jiarong, et al.
Publicado: (2022) -
Public perceptions of digital fashion: An analysis of sentiment and Latent Dirichlet Allocation topic modeling
por: Zou, Yixin, et al.
Publicado: (2022)