Cargando…
Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data
The stress placed on global power supply systems by the growing demand for electricity has been steadily increasing in recent years. Thus, accurate forecasting of energy demand and consumption is essential to maintain the lifestyle and economic standards of nations sustainably. However, multiple fac...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683567/ https://www.ncbi.nlm.nih.gov/pubmed/36417448 http://dx.doi.org/10.1371/journal.pone.0278071 |
_version_ | 1784835078147276800 |
---|---|
author | Chung, Jaewon Jang, Beakcheol |
author_facet | Chung, Jaewon Jang, Beakcheol |
author_sort | Chung, Jaewon |
collection | PubMed |
description | The stress placed on global power supply systems by the growing demand for electricity has been steadily increasing in recent years. Thus, accurate forecasting of energy demand and consumption is essential to maintain the lifestyle and economic standards of nations sustainably. However, multiple factors, including climate change, affect the energy demands of local, national, and global power grids. Therefore, effective analysis of multivariable data is required for the accurate estimation of energy demand and consumption. In this context, some studies have suggested that LSTM and CNN models can be used to model electricity demand accurately. However, existing works have utilized training based on either electricity loads and weather observations or national metrics e.g., gross domestic product, imports, and exports. This binary segregation has degraded forecasting performance. To resolve this shortcoming, we propose a CNN-LSTM model based on a multivariable augmentation approach. Based on previous studies, we adopt 1D convolution and pooling to extract undiscovered features from temporal sequences. LSTM outperforms RNN on vanishing gradient problems while retaining its benefits regarding time-series variables. The proposed model exhibits near-perfect forecasting of electricity consumption, outperforming existing models. Further, state-level analysis and training are performed, demonstrating the utility of the proposed methodology in forecasting regional energy consumption. The proposed model outperforms other models in most areas. |
format | Online Article Text |
id | pubmed-9683567 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-96835672022-11-24 Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data Chung, Jaewon Jang, Beakcheol PLoS One Research Article The stress placed on global power supply systems by the growing demand for electricity has been steadily increasing in recent years. Thus, accurate forecasting of energy demand and consumption is essential to maintain the lifestyle and economic standards of nations sustainably. However, multiple factors, including climate change, affect the energy demands of local, national, and global power grids. Therefore, effective analysis of multivariable data is required for the accurate estimation of energy demand and consumption. In this context, some studies have suggested that LSTM and CNN models can be used to model electricity demand accurately. However, existing works have utilized training based on either electricity loads and weather observations or national metrics e.g., gross domestic product, imports, and exports. This binary segregation has degraded forecasting performance. To resolve this shortcoming, we propose a CNN-LSTM model based on a multivariable augmentation approach. Based on previous studies, we adopt 1D convolution and pooling to extract undiscovered features from temporal sequences. LSTM outperforms RNN on vanishing gradient problems while retaining its benefits regarding time-series variables. The proposed model exhibits near-perfect forecasting of electricity consumption, outperforming existing models. Further, state-level analysis and training are performed, demonstrating the utility of the proposed methodology in forecasting regional energy consumption. The proposed model outperforms other models in most areas. Public Library of Science 2022-11-23 /pmc/articles/PMC9683567/ /pubmed/36417448 http://dx.doi.org/10.1371/journal.pone.0278071 Text en © 2022 Chung, Jang https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Chung, Jaewon Jang, Beakcheol Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data |
title | Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data |
title_full | Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data |
title_fullStr | Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data |
title_full_unstemmed | Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data |
title_short | Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data |
title_sort | accurate prediction of electricity consumption using a hybrid cnn-lstm model based on multivariable data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683567/ https://www.ncbi.nlm.nih.gov/pubmed/36417448 http://dx.doi.org/10.1371/journal.pone.0278071 |
work_keys_str_mv | AT chungjaewon accuratepredictionofelectricityconsumptionusingahybridcnnlstmmodelbasedonmultivariabledata AT jangbeakcheol accuratepredictionofelectricityconsumptionusingahybridcnnlstmmodelbasedonmultivariabledata |