Cargando…
Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data
The stress placed on global power supply systems by the growing demand for electricity has been steadily increasing in recent years. Thus, accurate forecasting of energy demand and consumption is essential to maintain the lifestyle and economic standards of nations sustainably. However, multiple fac...
Autores principales: | Chung, Jaewon, Jang, Beakcheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683567/ https://www.ncbi.nlm.nih.gov/pubmed/36417448 http://dx.doi.org/10.1371/journal.pone.0278071 |
Ejemplares similares
-
Hybrid CNN-LSTM model with efficient hyperparameter tuning for prediction of Parkinson’s disease
por: Lilhore, Umesh Kumar, et al.
Publicado: (2023) -
Language Processing Model Construction and Simulation Based on Hybrid CNN and LSTM
por: Zhang, Shujing
Publicado: (2021) -
A hybrid CNN-LSTM model for pre-miRNA classification
por: Tasdelen, Abdulkadir, et al.
Publicado: (2021) -
Retracted: Language Processing Model Construction and Simulation Based on Hybrid CNN and LSTM
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
CNN-LSTM-Based Prognostics of Bidirectional Converters for Electric Vehicles’ Machine
por: Rojas-Dueñas, Gabriel, et al.
Publicado: (2021)