Cargando…

Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images

The primary screening by automated computational pathology algorithms of the presence or absence of adenocarcinoma in biopsy specimens (e.g., endoscopic biopsy, transbronchial lung biopsy, and needle biopsy) of possible primary organs (e.g., stomach, colon, lung, and breast) and radical lymph node d...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsuneki, Masayuki, Kanavati, Fahdi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683606/
https://www.ncbi.nlm.nih.gov/pubmed/36417401
http://dx.doi.org/10.1371/journal.pone.0275378
Descripción
Sumario:The primary screening by automated computational pathology algorithms of the presence or absence of adenocarcinoma in biopsy specimens (e.g., endoscopic biopsy, transbronchial lung biopsy, and needle biopsy) of possible primary organs (e.g., stomach, colon, lung, and breast) and radical lymph node dissection specimen is very useful and should be a powerful tool to assist surgical pathologists in routine histopathological diagnostic workflow. In this paper, we trained multi-organ deep learning models to classify adenocarcinoma in biopsy and radical lymph node dissection specimens whole slide images (WSIs). We evaluated the models on five independent test sets (stomach, colon, lung, breast, lymph nodes) to demonstrate the feasibility in multi-organ and lymph nodes specimens from different medical institutions, achieving receiver operating characteristic areas under the curves (ROC-AUCs) in the range of 0.91 -0.98.