Cargando…
Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images
The primary screening by automated computational pathology algorithms of the presence or absence of adenocarcinoma in biopsy specimens (e.g., endoscopic biopsy, transbronchial lung biopsy, and needle biopsy) of possible primary organs (e.g., stomach, colon, lung, and breast) and radical lymph node d...
Autores principales: | Tsuneki, Masayuki, Kanavati, Fahdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683606/ https://www.ncbi.nlm.nih.gov/pubmed/36417401 http://dx.doi.org/10.1371/journal.pone.0275378 |
Ejemplares similares
-
Weakly Supervised Learning for Poorly Differentiated Adenocarcinoma Classification in GastricEndoscopic Submucosal Dissection Whole Slide Images
por: Tsuneki, Masayuki, et al.
Publicado: (2022) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
por: Kanavati, Fahdi, et al.
Publicado: (2021) -
A deep learning model for gastric diffuse-type adenocarcinoma classification in whole slide images
por: Kanavati, Fahdi, et al.
Publicado: (2021) -
Transfer Learning for Adenocarcinoma Classifications in the Transurethral Resection of Prostate Whole-Slide Images
por: Tsuneki, Masayuki, et al.
Publicado: (2022) -
Deep Learning Models for Poorly Differentiated Colorectal Adenocarcinoma Classification in Whole Slide Images Using Transfer Learning
por: Tsuneki, Masayuki, et al.
Publicado: (2021)