Cargando…
Android malware detection method based on highly distinguishable static features and DenseNet
The rapid growth of malware has become a serious problem that threatens the security of the mobile ecosystem and needs to be studied and resolved. Android is the main target of attackers due to its open source and popularity. To solve this serious problem, an accurate and efficient malware detection...
Autores principales: | Yang, Jiyun, Zhang, Zhibo, Zhang, Heng, Fan, JiaWen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683612/ https://www.ncbi.nlm.nih.gov/pubmed/36417464 http://dx.doi.org/10.1371/journal.pone.0276332 |
Ejemplares similares
-
An Efficient DenseNet-Based Deep Learning Model for Malware Detection
por: Hemalatha, Jeyaprakash, et al.
Publicado: (2021) -
DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy
por: Alshammari, Abdulaziz
Publicado: (2023) -
Malware detection in Android phones
por: Malik, Sapna
Publicado: (2017) -
A static analysis approach for Android permission-based malware detection systems
por: Mohamad Arif, Juliza, et al.
Publicado: (2021) -
CrodenseNet: An efficient parallel cross DenseNet for COVID-19 infection detection
por: Yang, Jingdong, et al.
Publicado: (2022)