Cargando…
Humans combine value learning and hypothesis testing strategically in multi-dimensional probabilistic reward learning
Realistic and complex decision tasks often allow for many possible solutions. How do we find the correct one? Introspection suggests a process of trying out solutions one after the other until success. However, such methodical serial testing may be too slow, especially in environments with noisy fee...
Autores principales: | Song, Mingyu, Baah, Persis A., Cai, Ming Bo, Niv, Yael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683628/ https://www.ncbi.nlm.nih.gov/pubmed/36417419 http://dx.doi.org/10.1371/journal.pcbi.1010699 |
Ejemplares similares
-
Correction: Humans combine value learning and hypothesis testing strategically in multi-dimensional probabilistic reward learning
Publicado: (2022) -
Dopamine neurons learn relative chosen value from probabilistic rewards
por: Lak, Armin, et al.
Publicado: (2016) -
Signed and unsigned reward prediction errors dynamically enhance learning and memory
por: Rouhani, Nina, et al.
Publicado: (2021) -
Neural structure mapping in human probabilistic reward learning
por: Luyckx, Fabrice, et al.
Publicado: (2019) -
Value Learning and Arousal in the Extinction of Probabilistic Rewards: The Role of Dopamine in a Modified Temporal Difference Model
por: Song, Minryung R., et al.
Publicado: (2014)