Cargando…
Automated model calibration with parallel MCMC: Applications for a cardiovascular system model
Computational physiological models continue to increase in complexity, however, the task of efficiently calibrating the model to available clinical data remains a significant challenge. One part of this challenge is associated with long calibration times, which present a barrier for the routine appl...
Autores principales: | Argus, Finbar, Zhao, Debbie, Babarenda Gamage, Thiranja P., Nash, Martyn P., Maso Talou, Gonzalo D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683692/ https://www.ncbi.nlm.nih.gov/pubmed/36439250 http://dx.doi.org/10.3389/fphys.2022.1018134 |
Ejemplares similares
-
Efficient Ventricular Parameter Estimation Using AI-Surrogate Models
por: Maso Talou, Gonzalo D., et al.
Publicado: (2021) -
Roadmap for an imaging and modelling paediatric study in rural NZ
por: Kumar, Haribalan, et al.
Publicado: (2023) -
MITEA: A dataset for machine learning segmentation of the left ventricle in 3D echocardiography using subject-specific labels from cardiac magnetic resonance imaging
por: Zhao, Debbie, et al.
Publicado: (2023) -
Mechanical Characterization of the Vessel Wall by Data Assimilation of Intravascular Ultrasound Studies
por: Maso Talou, Gonzalo D., et al.
Publicado: (2018) -
Parallel generation of extensive vascular networks with application to an archetypal human kidney model
por: Cury, L. F. M., et al.
Publicado: (2021)