Cargando…
Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in Mycobacterium tuberculosis
CRISPR screening, including CRISPR interference (CRISPRi) and CRISPR-knockout (CRISPR-KO) screening, has become a powerful technology in the genetic screening of eukaryotes. In contrast with eukaryotes, CRISPR-KO screening has not yet been applied to functional genomics studies in bacteria. Here, we...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683719/ https://www.ncbi.nlm.nih.gov/pubmed/36417506 http://dx.doi.org/10.1126/sciadv.add5907 |
Sumario: | CRISPR screening, including CRISPR interference (CRISPRi) and CRISPR-knockout (CRISPR-KO) screening, has become a powerful technology in the genetic screening of eukaryotes. In contrast with eukaryotes, CRISPR-KO screening has not yet been applied to functional genomics studies in bacteria. Here, we constructed genome-scale CRISPR-KO and also CRISPRi libraries in Mycobacterium tuberculosis (Mtb). We first examined these libraries to identify genes essential for Mtb viability. Subsequent screening identified dozens of genes associated with resistance/susceptibility to the antitubercular drug bedaquiline (BDQ). Genetic and chemical validation of the screening results suggested that it provided a valuable resource to investigate mechanisms of action underlying the effects of BDQ and to identify chemical-genetic synergies that can be used to optimize tuberculosis therapy. In summary, our results demonstrate the potential for efficient genome-wide CRISPR-KO screening in bacteria and establish a combined CRISPR screening approach for high-throughput investigation of genetic and chemical-genetic interactions in Mtb. |
---|