Cargando…
Generative and reproducible benchmarks or comprehensive evaluation machine learning classifiers
Understanding the strengths and weaknesses of machine learning (ML) algorithms is crucial to determine their scope of application. Here, we introduce the Diverse and Generative ML Benchmark (DIGEN), a collection of synthetic datasets for comprehensive, reproducible, and interpretable benchmarking of...
Autores principales: | Orzechowski, Patryk, Moore, Jason H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683726/ https://www.ncbi.nlm.nih.gov/pubmed/36417520 http://dx.doi.org/10.1126/sciadv.abl4747 |
Ejemplares similares
-
PMLB: a large benchmark suite for machine learning evaluation and comparison
por: Olson, Randal S., et al.
Publicado: (2017) -
Toward a taxonomy of trust for probabilistic machine learning
por: Broderick, Tamara, et al.
Publicado: (2023) -
Mapping of machine learning approaches for description, prediction, and causal inference in the social and health sciences
por: Leist, Anja K., et al.
Publicado: (2022) -
Classifying chronic pain using multidimensional pain-agnostic symptom assessments and clustering analysis
por: Gilam, Gadi, et al.
Publicado: (2021) -
Judging facts, judging norms: Training machine learning models to judge humans requires a modified approach to labeling data
por: Balagopalan, Aparna, et al.
Publicado: (2023)