Cargando…
General short-term load forecasting based on multi-task temporal convolutional network in COVID-19
The spread of the global COVID-19 epidemic has resulted in significant shifts in electricity consumption compared to regular days. It is unknown if standard single-task, single-indicator load forecasting algorithms can accurately reflect COVID-19 load patterns. Power practitioners urgently want a si...
Autores principales: | Zhang, Zhenhao, Liu, Jiefeng, Pang, Senshen, Shi, Mingchen, Goh, Hui Hwang, Zhang, Yiyi, Zhang, Dongdong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684111/ http://dx.doi.org/10.1016/j.ijepes.2022.108811 |
Ejemplares similares
-
Power system load forecasting using mobility optimization and multi-task learning in COVID-19
por: Liu, Jiefeng, et al.
Publicado: (2022) -
Multi-horizon short-term load forecasting using hybrid of LSTM and modified split convolution
por: Ullah, Irshad, et al.
Publicado: (2023) -
Forecasting short-term data center network traffic load with convolutional neural networks
por: Mozo, Alberto, et al.
Publicado: (2018) -
Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting
por: Huang, Lei, et al.
Publicado: (2022) -
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023)