Cargando…
Theoretical designing of non-fullerene derived organic heterocyclic compounds with enhanced nonlinear optical amplitude: a DFT based prediction
In current era, non-fullerene (NF) chromophores have been reported as significant NLO materials due to promising optoelectronic properties. Therefore, a series of NF based chromophores abbreviated as TPBD2-TPBD6 with D–π–A architecture was designed from the reference compound (TPBR1) by its structur...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684159/ https://www.ncbi.nlm.nih.gov/pubmed/36418421 http://dx.doi.org/10.1038/s41598-022-21894-x |
Sumario: | In current era, non-fullerene (NF) chromophores have been reported as significant NLO materials due to promising optoelectronic properties. Therefore, a series of NF based chromophores abbreviated as TPBD2-TPBD6 with D–π–A architecture was designed from the reference compound (TPBR1) by its structural tailoring with an efficient donor and various acceptor groups for the first time. First, the structures of said compounds were optimized at M06-2X/6-311G (d,p) level. Further, the optimized structures were utilized to execute frontier molecular orbitals (FMOs), UV–Visible (UV–Vis) absorption, density of states (DOS) and transition density matrix (TDM) analyses at the same level to understand the non-linear (NLO) response of TPBR1 and TPBD2-TPBD6. Promising NLO results were achieved for all derivatives i.e., the highest amplitude of linear polarizability ⟨α⟩, first (β(total)) and second ([Formula: see text] (total)) hyperpolarizabilities than their parent molecule. The compound TPBD3 was noted with the most significant NLO properties as compared to the standard molecule. The structural modeling approach by utilizing the acceptor molecules has played a prominent role in attaining favorable NLO responses in the molecules. Thus, our study has tempted the experimentalists to synthesize the proposed NLO materials for the modern optoelectronic high-tech applications. |
---|