Cargando…
Predicting Low Cognitive Ability at Age 5—Feature Selection Using Machine Learning Methods and Birth Cohort Data
Objectives: In this study, we applied the random forest (RF) algorithm to birth-cohort data to train a model to predict low cognitive ability at 5 years of age and to identify the important predictive features. Methods: Data was from 1,070 participants in the Irish population-based BASELINE cohort....
Autores principales: | Bowe, Andrea K., Lightbody, Gordon, Staines, Anthony, Kiely, Mairead E., McCarthy, Fergus P., Murray, Deirdre M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684182/ https://www.ncbi.nlm.nih.gov/pubmed/36439276 http://dx.doi.org/10.3389/ijph.2022.1605047 |
Ejemplares similares
-
Predicting low cognitive ability at age 5 using machine learning methods and birth cohort data
por: Bowe, A, et al.
Publicado: (2022) -
Big data, machine learning, and population health: predicting cognitive outcomes in childhood
por: Bowe, Andrea K., et al.
Publicado: (2022) -
Below Average Cognitive Ability—An under Researched Risk Factor for Emotional-Behavioural Difficulties in Childhood
por: Bowe, Andrea K., et al.
Publicado: (2021) -
The predictive value of the ages and stages questionnaire in late infancy for low average cognitive ability at age 5
por: Bowe, Andrea K., et al.
Publicado: (2022) -
Using Machine Learning to Predict Cognitive Impairment Among Middle-Aged and Older Chinese: A Longitudinal Study
por: Liu, Haihong, et al.
Publicado: (2023)