Cargando…
Gradient boosting and bayesian network machine learning models predict aflatoxin and fumonisin contamination of maize in Illinois – First USA case study
Mycotoxin contamination of corn results in significant agroeconomic losses and poses serious health issues worldwide. This paper presents the first report utilizing machine learning and historical aflatoxin and fumonisin contamination levels in-order-to develop models that can confidently predict my...
Autores principales: | Castano-Duque, Lina, Vaughan, Martha, Lindsay, James, Barnett, Kristin, Rajasekaran, Kanniah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684211/ https://www.ncbi.nlm.nih.gov/pubmed/36439814 http://dx.doi.org/10.3389/fmicb.2022.1039947 |
Ejemplares similares
-
Gradient boosting machine learning model to predict aflatoxins in Iowa corn
por: Branstad-Spates, Emily H., et al.
Publicado: (2023) -
A Low-Cost, Portable Device for Detecting and Sorting Aflatoxin-Contaminated Maize Kernels
por: Yao, Haibo, et al.
Publicado: (2023) -
Dynamic geospatial modeling of mycotoxin contamination of corn in Illinois: unveiling critical factors and predictive insights with machine learning
por: Castano-Duque, Lina, et al.
Publicado: (2023) -
Influence of socio‐economic and agronomic factors on aflatoxin and fumonisin contamination of maize in western Kenya
por: Njeru, Nancy Karimi, et al.
Publicado: (2019) -
Flavonoids Modulate Aspergillus flavus Proliferation and Aflatoxin Production
por: Castano-Duque, Lina, et al.
Publicado: (2022)