Cargando…
Quantifying deep neural network uncertainty for atrial fibrillation detection with limited labels
Atrial fibrillation (AF) is the most common arrhythmia found in the intensive care unit (ICU), and is associated with many adverse outcomes. Effective handling of AF and similar arrhythmias is a vital part of modern critical care, but obtaining knowledge about both disease burden and effective inter...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684456/ https://www.ncbi.nlm.nih.gov/pubmed/36418604 http://dx.doi.org/10.1038/s41598-022-24574-y |
Sumario: | Atrial fibrillation (AF) is the most common arrhythmia found in the intensive care unit (ICU), and is associated with many adverse outcomes. Effective handling of AF and similar arrhythmias is a vital part of modern critical care, but obtaining knowledge about both disease burden and effective interventions often requires costly clinical trials. A wealth of continuous, high frequency physiological data such as the waveforms derived from electrocardiogram telemetry are promising sources for enriching clinical research. Automated detection using machine learning and in particular deep learning has been explored as a solution for processing these data. However, a lack of labels, increased presence of noise, and inability to assess the quality and trustworthiness of many machine learning model predictions pose challenges to interpretation. In this work, we propose an approach for training deep AF models on limited, noisy data and report uncertainty in their predictions. Using techniques from the fields of weakly supervised learning, we leverage a surrogate model trained on non-ICU data to create imperfect labels for a large ICU telemetry dataset. We combine these weak labels with techniques to estimate model uncertainty without the need for extensive human data annotation. AF detection models trained using this process demonstrated higher classification performance (0.64–0.67 F1 score) and improved calibration (0.05–0.07 expected calibration error). |
---|