Cargando…
Quantifying deep neural network uncertainty for atrial fibrillation detection with limited labels
Atrial fibrillation (AF) is the most common arrhythmia found in the intensive care unit (ICU), and is associated with many adverse outcomes. Effective handling of AF and similar arrhythmias is a vital part of modern critical care, but obtaining knowledge about both disease burden and effective inter...
Autores principales: | Chen, Brian, Javadi, Golara, Hamilton, Alexander, Sibley, Stephanie, Laird, Philip, Abolmaesumi, Purang, Maslove, David, Mousavi, Parvin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684456/ https://www.ncbi.nlm.nih.gov/pubmed/36418604 http://dx.doi.org/10.1038/s41598-022-24574-y |
Ejemplares similares
-
A deep learning model for the classification of atrial fibrillation in critically ill patients
por: Chen, Brian, et al.
Publicado: (2023) -
Investigation of photoacoustic tomography reconstruction with a limited view from linear array
por: Ai, Min, et al.
Publicado: (2021) -
Design of an Ultrasound-Navigated Prostate Cancer Biopsy System for Nationwide Implementation in Senegal
por: Fichtinger, Gabor, et al.
Publicado: (2021) -
Generalizable deep temporal models for predicting episodes of sudden hypotension in critically ill patients: a personalized approach
por: Chan, Brandon, et al.
Publicado: (2020) -
Stochastic Sequential Modeling: Toward Improved Prostate Cancer Diagnosis Through Temporal-Ultrasound
por: Nahlawi, Layan, et al.
Publicado: (2020)