Cargando…
The systemic renin-angiotensin system in COVID-19
SARS-CoV-2 gains cell entry via angiotensin-converting enzyme (ACE) 2, a membrane-bound enzyme of the “alternative” (alt) renin-angiotensin system (RAS). ACE2 counteracts angiotensin II by converting it to potentially protective angiotensin 1–7. Using mass spectrometry, we assessed key metabolites o...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684482/ https://www.ncbi.nlm.nih.gov/pubmed/36418458 http://dx.doi.org/10.1038/s41598-022-24628-1 |
_version_ | 1784835292432171008 |
---|---|
author | Reindl-Schwaighofer, Roman Hödlmoser, Sebastian Domenig, Oliver Krenn, Katharina Eskandary, Farsad Krenn, Simon Schörgenhofer, Christian Rumpf, Benedikt Karolyi, Mario Traugott, Marianna T. Abrahamowicz, Agnes Tinhof, Viktoria Mayfurth, Hannah Rathkolb, Vincent Mußnig, Sebastian Schmölz, Lukas Ullrich, Roman Heinzel, Andreas König, Franz Binder, Christina Bonderman, Diana Strassl, Robert Puchhammer-Stöckl, Elisabeth Gorkiewicz, Gregor Aberle, Judith H. Jilma, Bernd Wenisch, Christoph Poglitsch, Marko Oberbauer, Rainer Zoufaly, Alexander Hecking, Manfred |
author_facet | Reindl-Schwaighofer, Roman Hödlmoser, Sebastian Domenig, Oliver Krenn, Katharina Eskandary, Farsad Krenn, Simon Schörgenhofer, Christian Rumpf, Benedikt Karolyi, Mario Traugott, Marianna T. Abrahamowicz, Agnes Tinhof, Viktoria Mayfurth, Hannah Rathkolb, Vincent Mußnig, Sebastian Schmölz, Lukas Ullrich, Roman Heinzel, Andreas König, Franz Binder, Christina Bonderman, Diana Strassl, Robert Puchhammer-Stöckl, Elisabeth Gorkiewicz, Gregor Aberle, Judith H. Jilma, Bernd Wenisch, Christoph Poglitsch, Marko Oberbauer, Rainer Zoufaly, Alexander Hecking, Manfred |
author_sort | Reindl-Schwaighofer, Roman |
collection | PubMed |
description | SARS-CoV-2 gains cell entry via angiotensin-converting enzyme (ACE) 2, a membrane-bound enzyme of the “alternative” (alt) renin-angiotensin system (RAS). ACE2 counteracts angiotensin II by converting it to potentially protective angiotensin 1–7. Using mass spectrometry, we assessed key metabolites of the classical RAS (angiotensins I–II) and alt-RAS (angiotensins 1–7 and 1–5) pathways as well as ACE and ACE2 concentrations in 159 patients hospitalized with COVID-19, stratified by disease severity (severe, n = 76; non-severe: n = 83). Plasma renin activity (PRA-S) was calculated as the sum of RAS metabolites. We estimated ACE activity using the angiotensin II:I ratio (ACE-S) and estimated systemic alt-RAS activation using the ratio of alt-RAS axis metabolites to PRA-S (ALT-S). We applied mixed linear models to assess how PRA-S and ACE/ACE2 concentrations affected ALT-S, ACE-S, and angiotensins II and 1-7. Median angiotensin I and II levels were higher with severe versus non-severe COVID-19 (angiotensin I: 86 versus 30 pmol/L, p < 0.01; angiotensin II: 114 versus 58 pmol/L, p < 0.05), demonstrating activation of classical RAS. The difference disappeared with analysis limited to patients not taking a RAS inhibitor (angiotensin I: 40 versus 31 pmol/L, p = 0.251; angiotensin II: 76 versus 99 pmol/L, p = 0.833). ALT-S in severe COVID-19 increased with time (days 1–6: 0.12; days 11–16: 0.22) and correlated with ACE2 concentration (r = 0.831). ACE-S was lower in severe versus non-severe COVID-19 (1.6 versus 2.6; p < 0.001), but ACE concentrations were similar between groups and correlated weakly with ACE-S (r = 0.232). ACE2 and ACE-S trajectories in severe COVID-19, however, did not differ between survivors and non-survivors. Overall RAS alteration in severe COVID-19 resembled severity of disease-matched patients with influenza. In mixed linear models, renin activity most strongly predicted angiotensin II and 1-7 levels. ACE2 also predicted angiotensin 1-7 levels and ALT-S. No single factor or the combined model, however, could fully explain ACE-S. ACE2 and ACE-S trajectories in severe COVID-19 did not differ between survivors and non-survivors. In conclusion, angiotensin II was elevated in severe COVID-19 but was markedly influenced by RAS inhibitors and driven by overall RAS activation. ACE-S was significantly lower with severe COVID-19 and did not correlate with ACE concentrations. A shift to the alt-RAS axis because of increased ACE2 could partially explain the relative reduction in angiotensin II levels. |
format | Online Article Text |
id | pubmed-9684482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-96844822022-11-25 The systemic renin-angiotensin system in COVID-19 Reindl-Schwaighofer, Roman Hödlmoser, Sebastian Domenig, Oliver Krenn, Katharina Eskandary, Farsad Krenn, Simon Schörgenhofer, Christian Rumpf, Benedikt Karolyi, Mario Traugott, Marianna T. Abrahamowicz, Agnes Tinhof, Viktoria Mayfurth, Hannah Rathkolb, Vincent Mußnig, Sebastian Schmölz, Lukas Ullrich, Roman Heinzel, Andreas König, Franz Binder, Christina Bonderman, Diana Strassl, Robert Puchhammer-Stöckl, Elisabeth Gorkiewicz, Gregor Aberle, Judith H. Jilma, Bernd Wenisch, Christoph Poglitsch, Marko Oberbauer, Rainer Zoufaly, Alexander Hecking, Manfred Sci Rep Article SARS-CoV-2 gains cell entry via angiotensin-converting enzyme (ACE) 2, a membrane-bound enzyme of the “alternative” (alt) renin-angiotensin system (RAS). ACE2 counteracts angiotensin II by converting it to potentially protective angiotensin 1–7. Using mass spectrometry, we assessed key metabolites of the classical RAS (angiotensins I–II) and alt-RAS (angiotensins 1–7 and 1–5) pathways as well as ACE and ACE2 concentrations in 159 patients hospitalized with COVID-19, stratified by disease severity (severe, n = 76; non-severe: n = 83). Plasma renin activity (PRA-S) was calculated as the sum of RAS metabolites. We estimated ACE activity using the angiotensin II:I ratio (ACE-S) and estimated systemic alt-RAS activation using the ratio of alt-RAS axis metabolites to PRA-S (ALT-S). We applied mixed linear models to assess how PRA-S and ACE/ACE2 concentrations affected ALT-S, ACE-S, and angiotensins II and 1-7. Median angiotensin I and II levels were higher with severe versus non-severe COVID-19 (angiotensin I: 86 versus 30 pmol/L, p < 0.01; angiotensin II: 114 versus 58 pmol/L, p < 0.05), demonstrating activation of classical RAS. The difference disappeared with analysis limited to patients not taking a RAS inhibitor (angiotensin I: 40 versus 31 pmol/L, p = 0.251; angiotensin II: 76 versus 99 pmol/L, p = 0.833). ALT-S in severe COVID-19 increased with time (days 1–6: 0.12; days 11–16: 0.22) and correlated with ACE2 concentration (r = 0.831). ACE-S was lower in severe versus non-severe COVID-19 (1.6 versus 2.6; p < 0.001), but ACE concentrations were similar between groups and correlated weakly with ACE-S (r = 0.232). ACE2 and ACE-S trajectories in severe COVID-19, however, did not differ between survivors and non-survivors. Overall RAS alteration in severe COVID-19 resembled severity of disease-matched patients with influenza. In mixed linear models, renin activity most strongly predicted angiotensin II and 1-7 levels. ACE2 also predicted angiotensin 1-7 levels and ALT-S. No single factor or the combined model, however, could fully explain ACE-S. ACE2 and ACE-S trajectories in severe COVID-19 did not differ between survivors and non-survivors. In conclusion, angiotensin II was elevated in severe COVID-19 but was markedly influenced by RAS inhibitors and driven by overall RAS activation. ACE-S was significantly lower with severe COVID-19 and did not correlate with ACE concentrations. A shift to the alt-RAS axis because of increased ACE2 could partially explain the relative reduction in angiotensin II levels. Nature Publishing Group UK 2022-11-22 /pmc/articles/PMC9684482/ /pubmed/36418458 http://dx.doi.org/10.1038/s41598-022-24628-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Reindl-Schwaighofer, Roman Hödlmoser, Sebastian Domenig, Oliver Krenn, Katharina Eskandary, Farsad Krenn, Simon Schörgenhofer, Christian Rumpf, Benedikt Karolyi, Mario Traugott, Marianna T. Abrahamowicz, Agnes Tinhof, Viktoria Mayfurth, Hannah Rathkolb, Vincent Mußnig, Sebastian Schmölz, Lukas Ullrich, Roman Heinzel, Andreas König, Franz Binder, Christina Bonderman, Diana Strassl, Robert Puchhammer-Stöckl, Elisabeth Gorkiewicz, Gregor Aberle, Judith H. Jilma, Bernd Wenisch, Christoph Poglitsch, Marko Oberbauer, Rainer Zoufaly, Alexander Hecking, Manfred The systemic renin-angiotensin system in COVID-19 |
title | The systemic renin-angiotensin system in COVID-19 |
title_full | The systemic renin-angiotensin system in COVID-19 |
title_fullStr | The systemic renin-angiotensin system in COVID-19 |
title_full_unstemmed | The systemic renin-angiotensin system in COVID-19 |
title_short | The systemic renin-angiotensin system in COVID-19 |
title_sort | systemic renin-angiotensin system in covid-19 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684482/ https://www.ncbi.nlm.nih.gov/pubmed/36418458 http://dx.doi.org/10.1038/s41598-022-24628-1 |
work_keys_str_mv | AT reindlschwaighoferroman thesystemicreninangiotensinsystemincovid19 AT hodlmosersebastian thesystemicreninangiotensinsystemincovid19 AT domenigoliver thesystemicreninangiotensinsystemincovid19 AT krennkatharina thesystemicreninangiotensinsystemincovid19 AT eskandaryfarsad thesystemicreninangiotensinsystemincovid19 AT krennsimon thesystemicreninangiotensinsystemincovid19 AT schorgenhoferchristian thesystemicreninangiotensinsystemincovid19 AT rumpfbenedikt thesystemicreninangiotensinsystemincovid19 AT karolyimario thesystemicreninangiotensinsystemincovid19 AT traugottmariannat thesystemicreninangiotensinsystemincovid19 AT abrahamowiczagnes thesystemicreninangiotensinsystemincovid19 AT tinhofviktoria thesystemicreninangiotensinsystemincovid19 AT mayfurthhannah thesystemicreninangiotensinsystemincovid19 AT rathkolbvincent thesystemicreninangiotensinsystemincovid19 AT mußnigsebastian thesystemicreninangiotensinsystemincovid19 AT schmolzlukas thesystemicreninangiotensinsystemincovid19 AT ullrichroman thesystemicreninangiotensinsystemincovid19 AT heinzelandreas thesystemicreninangiotensinsystemincovid19 AT konigfranz thesystemicreninangiotensinsystemincovid19 AT binderchristina thesystemicreninangiotensinsystemincovid19 AT bondermandiana thesystemicreninangiotensinsystemincovid19 AT strasslrobert thesystemicreninangiotensinsystemincovid19 AT puchhammerstocklelisabeth thesystemicreninangiotensinsystemincovid19 AT gorkiewiczgregor thesystemicreninangiotensinsystemincovid19 AT aberlejudithh thesystemicreninangiotensinsystemincovid19 AT jilmabernd thesystemicreninangiotensinsystemincovid19 AT wenischchristoph thesystemicreninangiotensinsystemincovid19 AT poglitschmarko thesystemicreninangiotensinsystemincovid19 AT oberbauerrainer thesystemicreninangiotensinsystemincovid19 AT zoufalyalexander thesystemicreninangiotensinsystemincovid19 AT heckingmanfred thesystemicreninangiotensinsystemincovid19 AT reindlschwaighoferroman systemicreninangiotensinsystemincovid19 AT hodlmosersebastian systemicreninangiotensinsystemincovid19 AT domenigoliver systemicreninangiotensinsystemincovid19 AT krennkatharina systemicreninangiotensinsystemincovid19 AT eskandaryfarsad systemicreninangiotensinsystemincovid19 AT krennsimon systemicreninangiotensinsystemincovid19 AT schorgenhoferchristian systemicreninangiotensinsystemincovid19 AT rumpfbenedikt systemicreninangiotensinsystemincovid19 AT karolyimario systemicreninangiotensinsystemincovid19 AT traugottmariannat systemicreninangiotensinsystemincovid19 AT abrahamowiczagnes systemicreninangiotensinsystemincovid19 AT tinhofviktoria systemicreninangiotensinsystemincovid19 AT mayfurthhannah systemicreninangiotensinsystemincovid19 AT rathkolbvincent systemicreninangiotensinsystemincovid19 AT mußnigsebastian systemicreninangiotensinsystemincovid19 AT schmolzlukas systemicreninangiotensinsystemincovid19 AT ullrichroman systemicreninangiotensinsystemincovid19 AT heinzelandreas systemicreninangiotensinsystemincovid19 AT konigfranz systemicreninangiotensinsystemincovid19 AT binderchristina systemicreninangiotensinsystemincovid19 AT bondermandiana systemicreninangiotensinsystemincovid19 AT strasslrobert systemicreninangiotensinsystemincovid19 AT puchhammerstocklelisabeth systemicreninangiotensinsystemincovid19 AT gorkiewiczgregor systemicreninangiotensinsystemincovid19 AT aberlejudithh systemicreninangiotensinsystemincovid19 AT jilmabernd systemicreninangiotensinsystemincovid19 AT wenischchristoph systemicreninangiotensinsystemincovid19 AT poglitschmarko systemicreninangiotensinsystemincovid19 AT oberbauerrainer systemicreninangiotensinsystemincovid19 AT zoufalyalexander systemicreninangiotensinsystemincovid19 AT heckingmanfred systemicreninangiotensinsystemincovid19 |