Cargando…
Predicting neoadjuvant chemotherapy benefit using deep learning from stromal histology in breast cancer
Neoadjuvant chemotherapy (NAC) is a standard treatment option for locally advanced breast cancer. However, not all patients benefit from NAC; some even obtain worse outcomes after therapy. Hence, predictors of treatment benefit are crucial for guiding clinical decision-making. Here, we investigated...
Autores principales: | Li, Fengling, Yang, Yongquan, Wei, Yani, Zhao, Yuanyuan, Fu, Jing, Xiao, Xiuli, Zheng, Zhongxi, Bu, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684483/ https://www.ncbi.nlm.nih.gov/pubmed/36418332 http://dx.doi.org/10.1038/s41523-022-00491-1 |
Ejemplares similares
-
Deep learning-based predictive biomarker of pathological complete response to neoadjuvant chemotherapy from histological images in breast cancer
por: Li, Fengling, et al.
Publicado: (2021) -
Deep learning with biopsy whole slide images for pretreatment prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer:A multicenter study
por: Li, Bao, et al.
Publicado: (2022) -
Multimodal deep learning models for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer
por: Joo, Sunghoon, et al.
Publicado: (2021) -
Do all patients with breast cancer benefit from neoadjuvant chemotherapy?
por: Lee, Kyoung Eun
Publicado: (2020) -
Breast Cancer Patients: Who Would Benefit from Neoadjuvant Chemotherapies?
por: Yao, Liqin, et al.
Publicado: (2022)