Cargando…

Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids

Organ-on-a-chip systems combine microfluidics, cell biology, and tissue engineering to culture 3D organ-specific in vitro models that recapitulate the biology and physiology of their in vivo counterparts. Here, we have developed a multiplex platform that automates the culture of individual organoids...

Descripción completa

Detalles Bibliográficos
Autores principales: Seiler, Spencer T., Mantalas, Gary L., Selberg, John, Cordero, Sergio, Torres-Montoya, Sebastian, Baudin, Pierre V., Ly, Victoria T., Amend, Finn, Tran, Liam, Hoffman, Ryan N., Rolandi, Marco, Green, Richard E., Haussler, David, Salama, Sofie R., Teodorescu, Mircea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684529/
https://www.ncbi.nlm.nih.gov/pubmed/36418910
http://dx.doi.org/10.1038/s41598-022-20096-9
_version_ 1784835304367063040
author Seiler, Spencer T.
Mantalas, Gary L.
Selberg, John
Cordero, Sergio
Torres-Montoya, Sebastian
Baudin, Pierre V.
Ly, Victoria T.
Amend, Finn
Tran, Liam
Hoffman, Ryan N.
Rolandi, Marco
Green, Richard E.
Haussler, David
Salama, Sofie R.
Teodorescu, Mircea
author_facet Seiler, Spencer T.
Mantalas, Gary L.
Selberg, John
Cordero, Sergio
Torres-Montoya, Sebastian
Baudin, Pierre V.
Ly, Victoria T.
Amend, Finn
Tran, Liam
Hoffman, Ryan N.
Rolandi, Marco
Green, Richard E.
Haussler, David
Salama, Sofie R.
Teodorescu, Mircea
author_sort Seiler, Spencer T.
collection PubMed
description Organ-on-a-chip systems combine microfluidics, cell biology, and tissue engineering to culture 3D organ-specific in vitro models that recapitulate the biology and physiology of their in vivo counterparts. Here, we have developed a multiplex platform that automates the culture of individual organoids in isolated microenvironments at user-defined media flow rates. Programmable workflows allow the use of multiple reagent reservoirs that may be applied to direct differentiation, study temporal variables, and grow cultures long term. Novel techniques in polydimethylsiloxane (PDMS) chip fabrication are described here that enable features on the upper and lower planes of a single PDMS substrate. RNA sequencing (RNA-seq) analysis of automated cerebral cortex organoid cultures shows benefits in reducing glycolytic and endoplasmic reticulum stress compared to conventional in vitro cell cultures.
format Online
Article
Text
id pubmed-9684529
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-96845292022-11-25 Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids Seiler, Spencer T. Mantalas, Gary L. Selberg, John Cordero, Sergio Torres-Montoya, Sebastian Baudin, Pierre V. Ly, Victoria T. Amend, Finn Tran, Liam Hoffman, Ryan N. Rolandi, Marco Green, Richard E. Haussler, David Salama, Sofie R. Teodorescu, Mircea Sci Rep Article Organ-on-a-chip systems combine microfluidics, cell biology, and tissue engineering to culture 3D organ-specific in vitro models that recapitulate the biology and physiology of their in vivo counterparts. Here, we have developed a multiplex platform that automates the culture of individual organoids in isolated microenvironments at user-defined media flow rates. Programmable workflows allow the use of multiple reagent reservoirs that may be applied to direct differentiation, study temporal variables, and grow cultures long term. Novel techniques in polydimethylsiloxane (PDMS) chip fabrication are described here that enable features on the upper and lower planes of a single PDMS substrate. RNA sequencing (RNA-seq) analysis of automated cerebral cortex organoid cultures shows benefits in reducing glycolytic and endoplasmic reticulum stress compared to conventional in vitro cell cultures. Nature Publishing Group UK 2022-11-23 /pmc/articles/PMC9684529/ /pubmed/36418910 http://dx.doi.org/10.1038/s41598-022-20096-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Seiler, Spencer T.
Mantalas, Gary L.
Selberg, John
Cordero, Sergio
Torres-Montoya, Sebastian
Baudin, Pierre V.
Ly, Victoria T.
Amend, Finn
Tran, Liam
Hoffman, Ryan N.
Rolandi, Marco
Green, Richard E.
Haussler, David
Salama, Sofie R.
Teodorescu, Mircea
Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
title Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
title_full Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
title_fullStr Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
title_full_unstemmed Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
title_short Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
title_sort modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684529/
https://www.ncbi.nlm.nih.gov/pubmed/36418910
http://dx.doi.org/10.1038/s41598-022-20096-9
work_keys_str_mv AT seilerspencert modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT mantalasgaryl modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT selbergjohn modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT corderosergio modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT torresmontoyasebastian modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT baudinpierrev modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT lyvictoriat modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT amendfinn modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT tranliam modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT hoffmanryann modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT rolandimarco modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT greenricharde modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT hausslerdavid modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT salamasofier modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT teodorescumircea modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids