Cargando…
Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
Organ-on-a-chip systems combine microfluidics, cell biology, and tissue engineering to culture 3D organ-specific in vitro models that recapitulate the biology and physiology of their in vivo counterparts. Here, we have developed a multiplex platform that automates the culture of individual organoids...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684529/ https://www.ncbi.nlm.nih.gov/pubmed/36418910 http://dx.doi.org/10.1038/s41598-022-20096-9 |
_version_ | 1784835304367063040 |
---|---|
author | Seiler, Spencer T. Mantalas, Gary L. Selberg, John Cordero, Sergio Torres-Montoya, Sebastian Baudin, Pierre V. Ly, Victoria T. Amend, Finn Tran, Liam Hoffman, Ryan N. Rolandi, Marco Green, Richard E. Haussler, David Salama, Sofie R. Teodorescu, Mircea |
author_facet | Seiler, Spencer T. Mantalas, Gary L. Selberg, John Cordero, Sergio Torres-Montoya, Sebastian Baudin, Pierre V. Ly, Victoria T. Amend, Finn Tran, Liam Hoffman, Ryan N. Rolandi, Marco Green, Richard E. Haussler, David Salama, Sofie R. Teodorescu, Mircea |
author_sort | Seiler, Spencer T. |
collection | PubMed |
description | Organ-on-a-chip systems combine microfluidics, cell biology, and tissue engineering to culture 3D organ-specific in vitro models that recapitulate the biology and physiology of their in vivo counterparts. Here, we have developed a multiplex platform that automates the culture of individual organoids in isolated microenvironments at user-defined media flow rates. Programmable workflows allow the use of multiple reagent reservoirs that may be applied to direct differentiation, study temporal variables, and grow cultures long term. Novel techniques in polydimethylsiloxane (PDMS) chip fabrication are described here that enable features on the upper and lower planes of a single PDMS substrate. RNA sequencing (RNA-seq) analysis of automated cerebral cortex organoid cultures shows benefits in reducing glycolytic and endoplasmic reticulum stress compared to conventional in vitro cell cultures. |
format | Online Article Text |
id | pubmed-9684529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-96845292022-11-25 Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids Seiler, Spencer T. Mantalas, Gary L. Selberg, John Cordero, Sergio Torres-Montoya, Sebastian Baudin, Pierre V. Ly, Victoria T. Amend, Finn Tran, Liam Hoffman, Ryan N. Rolandi, Marco Green, Richard E. Haussler, David Salama, Sofie R. Teodorescu, Mircea Sci Rep Article Organ-on-a-chip systems combine microfluidics, cell biology, and tissue engineering to culture 3D organ-specific in vitro models that recapitulate the biology and physiology of their in vivo counterparts. Here, we have developed a multiplex platform that automates the culture of individual organoids in isolated microenvironments at user-defined media flow rates. Programmable workflows allow the use of multiple reagent reservoirs that may be applied to direct differentiation, study temporal variables, and grow cultures long term. Novel techniques in polydimethylsiloxane (PDMS) chip fabrication are described here that enable features on the upper and lower planes of a single PDMS substrate. RNA sequencing (RNA-seq) analysis of automated cerebral cortex organoid cultures shows benefits in reducing glycolytic and endoplasmic reticulum stress compared to conventional in vitro cell cultures. Nature Publishing Group UK 2022-11-23 /pmc/articles/PMC9684529/ /pubmed/36418910 http://dx.doi.org/10.1038/s41598-022-20096-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Seiler, Spencer T. Mantalas, Gary L. Selberg, John Cordero, Sergio Torres-Montoya, Sebastian Baudin, Pierre V. Ly, Victoria T. Amend, Finn Tran, Liam Hoffman, Ryan N. Rolandi, Marco Green, Richard E. Haussler, David Salama, Sofie R. Teodorescu, Mircea Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids |
title | Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids |
title_full | Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids |
title_fullStr | Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids |
title_full_unstemmed | Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids |
title_short | Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids |
title_sort | modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684529/ https://www.ncbi.nlm.nih.gov/pubmed/36418910 http://dx.doi.org/10.1038/s41598-022-20096-9 |
work_keys_str_mv | AT seilerspencert modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT mantalasgaryl modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT selbergjohn modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT corderosergio modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT torresmontoyasebastian modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT baudinpierrev modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT lyvictoriat modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT amendfinn modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT tranliam modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT hoffmanryann modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT rolandimarco modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT greenricharde modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT hausslerdavid modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT salamasofier modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids AT teodorescumircea modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids |