Cargando…
Enhancing high-fidelity nonlinear solver with reduced order model
We propose the use of reduced order modeling (ROM) to reduce the computational cost and improve the convergence rate of nonlinear solvers of full order models (FOM) for solving partial differential equations. In this study, a novel ROM-assisted approach is developed to improve the computational effi...
Autores principales: | Kadeethum, Teeratorn, O’Malley, Daniel, Ballarin, Francesco, Ang, Ida, Fuhg, Jan N., Bouklas, Nikolaos, Silva, Vinicius L. S., Salinas, Pablo, Heaney, Claire E., Pain, Christopher C., Lee, Sanghyun, Viswanathan, Hari S., Yoon, Hongkyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684583/ https://www.ncbi.nlm.nih.gov/pubmed/36418389 http://dx.doi.org/10.1038/s41598-022-22407-6 |
Ejemplares similares
-
Reduced order modeling for flow and transport problems with Barlow Twins self-supervised learning
por: Kadeethum, Teeratorn, et al.
Publicado: (2022) -
Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations
por: Kadeethum, Teeratorn, et al.
Publicado: (2020) -
On ordering elements for a frontal solver
por: Scott, J A
Publicado: (1998) -
An Iterative Solver in the Presence and Absence of Multiplicity for Nonlinear Equations
por: Soleymani, Fazlollah, et al.
Publicado: (2013) -
A new row ordering strategy for frontal solvers
por: Scott, J A
Publicado: (1998)