Cargando…

The role of Shunaoxin pills in the treatment of chronic cerebral hypoperfusion and its main pharmacodynamic components

Chronic cerebral hypoperfusion (CCH) is a frequent ischemic cerebrovascular disease that induces brain dysfunction. Shunaoxin pills (SNX) are traditional Chinese medicines (TCM), frequently used for the treatment of CCH. The purpose of this study was to develop an activity-based screening system to...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jin, Chang, Nianwei, Liu, Jiani, Liu, Wenjuan, Bai, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684736/
https://www.ncbi.nlm.nih.gov/pubmed/36475059
http://dx.doi.org/10.1515/med-2022-0607
Descripción
Sumario:Chronic cerebral hypoperfusion (CCH) is a frequent ischemic cerebrovascular disease that induces brain dysfunction. Shunaoxin pills (SNX) are traditional Chinese medicines (TCM), frequently used for the treatment of CCH. The purpose of this study was to develop an activity-based screening system to identify the active ingredients of SNX. We developed a model of CCH and revealed that SNX induces cerebrovascular dilatation and protects against CCH-induced nerve cell injury in rats. Using the transcriptome analysis, we found that Ca(2+)-related signaling pathways play a major role in the effect of SNX against CCH. We developed an activity-based screening system based on the ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry coupled with a dual-luciferase reporter calcium assay to identify the active components of SNX. As a result, SNX dilates cerebral blood vessels, increasing cerebral blood flow by modulating calcium-related signaling pathways and regulating calcium homeostasis. Two calcium antagonists, ligustilide and senkyunolide I, were identified as active ingredients in SNX. In conclusion, we developed a rapid screening method suitable for the discovery of active natural products in TCM by integrating genomics and target pathway-oriented spectroscopic analysis.