Cargando…
Human migration-based graph convolutional network for PM2.5 forecasting in post-COVID-19 pandemic age
Due to the coronavirus disease 2019 pandemic, local authorities always implanted non-pharmaceutical interventions, such as maintaining social distance to reduce human migration. Besides, previous studies have proved that human migration highly influenced air pollution concentration in an area. There...
Autores principales: | Zhan, Choujun, Jiang, Wei, Min, Hu, Gao, Ying, Tse, C. K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684777/ https://www.ncbi.nlm.nih.gov/pubmed/36467631 http://dx.doi.org/10.1007/s00521-022-07876-0 |
Ejemplares similares
-
A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting
por: Li, Yulan, et al.
Publicado: (2022) -
Research on PM2.5 Spatiotemporal Forecasting Model Based on LSTM Neural Network
por: Zhao, Fang, et al.
Publicado: (2021) -
General Model for COVID-19 Spreading With Consideration of Intercity Migration, Insufficient Testing, and Active Intervention: Modeling Study of Pandemic Progression in Japan and the United States
por: Zhan, Choujun, et al.
Publicado: (2020) -
PM10 and PM2.5 real-time prediction models using an interpolated convolutional neural network
por: Chae, Sangwon, et al.
Publicado: (2021) -
Day-Ahead Hourly Solar Irradiance Forecasting Based on Multi-Attributed Spatio-Temporal Graph Convolutional Network
por: Jeon, Hyeon-Ju, et al.
Publicado: (2022)