Cargando…
A data-driven spatially-specific vaccine allocation framework for COVID-19
Although coronavirus disease 2019 (COVID-19) vaccines have been introduced, their allocation is a challenging problem. We propose a data-driven, spatially-specific vaccine allocation framework that aims to minimize the number of COVID-19-related deaths or infections. The framework combines a regiona...
Autores principales: | Hong, Zhaofu, Li, Yingjie, Gong, Yeming, Chen, Wanying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684883/ https://www.ncbi.nlm.nih.gov/pubmed/36467001 http://dx.doi.org/10.1007/s10479-022-05037-z |
Ejemplares similares
-
Optimal vaccine allocation for COVID-19 in the Netherlands: A data-driven prioritization
por: Miura, Fuminari, et al.
Publicado: (2021) -
Spatial Optimization to Improve COVID-19 Vaccine Allocation
por: Scroggins, Stephen, et al.
Publicado: (2022) -
Geo-prioritization framework for COVID-19 vaccine allocation in India
por: Mahajan, Akshay, et al.
Publicado: (2021) -
Optimizing Spatial Allocation of COVID‐19 Vaccine by Agent‐Based Spatiotemporal Simulations
por: Zhou, Shuli, et al.
Publicado: (2021) -
COVID-19 outbreak: A data-driven optimization model for allocation of patients
por: Sarkar, Sobhan, et al.
Publicado: (2021)