Cargando…
Using a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modeling
BACKGROUND: This study illustrates the use of logistic regression and machine learning methods, specifically random forest models, in health services research by analyzing outcomes for a cohort of patients with concomitant peripheral artery disease and diabetes mellitus. METHODS: Cohort study using...
Autores principales: | Austin, Andrea M., Ramkumar, Niveditta, Gladders, Barbara, Barnes, Jonathan A., Eid, Mark A., Moore, Kayla O., Feinberg, Mark W., Creager, Mark A., Bonaca, Marc, Goodney, Philip P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685056/ https://www.ncbi.nlm.nih.gov/pubmed/36418976 http://dx.doi.org/10.1186/s12874-022-01774-8 |
Ejemplares similares
-
Deriving International Classification of Diseases, 9th and 10th revision, codes for identifying and following up patients with diabetic lower extremity ulcers
por: Fowler, Xavier P., et al.
Publicado: (2022) -
Outcomes after peripheral artery disease intervention among Medicare–Medicaid dual-eligible patients compared with the general medicare population in the Vascular Quality Initiative registry
por: Austin, Andrea M, et al.
Publicado: (2019) -
Survival, reintervention and surveillance reports: long-term, centre-level evaluation and feedback of vascular interventions
por: Fowler, Xavier Philip, et al.
Publicado: (2022) -
Adverse Events After Atherectomy: Analyzing Long‐Term Outcomes of Endovascular Lower Extremity Revascularization Techniques
por: Ramkumar, Niveditta, et al.
Publicado: (2019) -
Logistic Regression for Machine Learning in Process Tomography
por: Rymarczyk, Tomasz, et al.
Publicado: (2019)