Cargando…
Predicting the aggregation number of cationic surfactants based on ANN-QSAR modeling approaches: understanding the impact of molecular descriptors on aggregation numbers
In this work, a quantitative structure–activity relationship (QSAR) study is performed on some cationic surfactants to evaluate the relationship between the molecular structures of the compounds with their aggregation numbers (AGGNs) in aqueous solution at 25 °C. An artificial neural network (ANN) m...
Autores principales: | Abdous, Behnaz, Sajjadi, S. Maryam, Bagheri, Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685374/ https://www.ncbi.nlm.nih.gov/pubmed/36505704 http://dx.doi.org/10.1039/d2ra06064g |
Ejemplares similares
-
Predicting rejection of emerging contaminants through RO membrane filtration based on ANN-QSAR modeling approach: trends in molecular descriptors and structures towards rejections
por: Mousavi, Setare Loh, et al.
Publicado: (2023) -
The adsorption and aggregation properties of dendritic cationic tetrameric surfactants
por: Xie, Yangchun, et al.
Publicado: (2018) -
Distinguishing compounds with anticancer activity by ANN using inductive QSAR descriptors
por: Jaiswal, Kunal, et al.
Publicado: (2008) -
Surfactant-Modulation of the Cationic-Polymer-Induced Aggregation of Anionic Particulate Dispersions
por: Abdullahi, Wasiu, et al.
Publicado: (2020) -
Synthesis, surface activities, and aggregation behavior of phenyl-containing carboxybetaine surfactants
por: Gao, Shifeng, et al.
Publicado: (2018)