Cargando…

MLSP: A bioinformatics tool for predicting molecular subtypes and prognosis in patients with breast cancer

The molecular landscape in breast cancer is characterized by large biological heterogeneity and variable clinical outcomes. Here, we performed an integrative multi-omics analysis of patients diagnosed with breast cancer. Using transcriptomic analysis, we identified three subtypes (cluster A, cluster...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Jie, Kong, Weikaixin, Huang, Liting, Wang, Shixin, Bi, Suzhen, Wang, Yin, Shan, Peipei, Zhu, Sujie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685393/
https://www.ncbi.nlm.nih.gov/pubmed/36467575
http://dx.doi.org/10.1016/j.csbj.2022.11.017
Descripción
Sumario:The molecular landscape in breast cancer is characterized by large biological heterogeneity and variable clinical outcomes. Here, we performed an integrative multi-omics analysis of patients diagnosed with breast cancer. Using transcriptomic analysis, we identified three subtypes (cluster A, cluster B and cluster C) of breast cancer with distinct prognosis, clinical features, and genomic alterations: Cluster A was associated with higher genomic instability, immune suppression and worst prognosis outcome; cluster B was associated with high activation of immune-pathway, increased mutations and middle prognosis outcome; cluster C was linked to Luminal A subtype patients, moderate immune cell infiltration and best prognosis outcome. Combination of the three newly identified clusters with PAM50 subtypes, we proposed potential new precision strategies for 15 subtypes using L1000 database. Then, we developed a robust gene pair (RGP) score for prognosis outcome prediction of patients with breast cancer. The RGP score is based on a novel gene-pairing approach to eliminate batch effects caused by differences in heterogeneous patient cohorts and transcriptomic data distributions, and it was validated in ten cohorts of patients with breast cancer. Finally, we developed a user-friendly web-tool (https://sujiezhulab.shinyapps.io/BRCA/) to predict subtype, treatment strategies and prognosis states for patients with breast cancer.