Cargando…
MLSP: A bioinformatics tool for predicting molecular subtypes and prognosis in patients with breast cancer
The molecular landscape in breast cancer is characterized by large biological heterogeneity and variable clinical outcomes. Here, we performed an integrative multi-omics analysis of patients diagnosed with breast cancer. Using transcriptomic analysis, we identified three subtypes (cluster A, cluster...
Autores principales: | Zhu, Jie, Kong, Weikaixin, Huang, Liting, Wang, Shixin, Bi, Suzhen, Wang, Yin, Shan, Peipei, Zhu, Sujie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685393/ https://www.ncbi.nlm.nih.gov/pubmed/36467575 http://dx.doi.org/10.1016/j.csbj.2022.11.017 |
Ejemplares similares
-
Identification of immunotherapy and chemotherapy-related molecular subtypes in colon cancer by integrated multi-omics data analysis
por: Zhu, Jie, et al.
Publicado: (2023) -
Guest Editorial: MLSP 2020 Special Issue
por: Särkkä, Simo, et al.
Publicado: (2022) -
Expression and Prognostic Characteristics of m6A RNA Methylation Regulators in Colon Cancer
por: Huang, Liting, et al.
Publicado: (2021) -
An immunity and pyroptosis gene-pair signature predicts overall survival in acute myeloid leukemia
por: Kong, Weikaixin, et al.
Publicado: (2022) -
Identification of Key Genes Related to Lung Squamous Cell Carcinoma Using Bioinformatics Analysis
por: Gao, Miaomiao, et al.
Publicado: (2020)