Cargando…
Poly(thioctic acid): From Bottom‐Up Self‐Assembly to 3D‐Fused Deposition Modeling Printing
Inspired by the bottom‐up assembly in nature, an artificial self‐assembly pattern is introduced into 3D‐fused deposition modeling (FDM) printing to achieve additive manufacturing on the macroscopic scale. Thermally activated polymerization of thioctic acid (TA) enabled the bulk construction of poly(...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685451/ https://www.ncbi.nlm.nih.gov/pubmed/36220340 http://dx.doi.org/10.1002/advs.202203630 |
_version_ | 1784835508614987776 |
---|---|
author | Cai, Changyong Wu, Shuanggen Zhang, Yunfei Li, Fenfang Tan, Zhijian Dong, Shengyi |
author_facet | Cai, Changyong Wu, Shuanggen Zhang, Yunfei Li, Fenfang Tan, Zhijian Dong, Shengyi |
author_sort | Cai, Changyong |
collection | PubMed |
description | Inspired by the bottom‐up assembly in nature, an artificial self‐assembly pattern is introduced into 3D‐fused deposition modeling (FDM) printing to achieve additive manufacturing on the macroscopic scale. Thermally activated polymerization of thioctic acid (TA) enabled the bulk construction of poly(TA), and yielded unique time‐dependent self‐assembly. Freshly prepared poly(TA) can spontaneously and continuously transfer into higher‐molecular‐weight species and low‐molecular‐weight TA monomers. Poly(TA) and the newly formed TA further assembled into self‐reinforcing materials via microscopic‐phase separation. Bottom‐up self‐assembly patterns on different scales are fully realized by 3D FDM printing of poly(TA): thermally induced polymerization of TA (microscopic‐scale assembly) to poly(TA) and 3D printing (macroscopic‐scale assembly) of poly(TA) are simultaneously achieved in the 3D‐printing process; after 3D printing, the poly(TA) modes show mechanically enhanced features over time, arising from the microscopic self‐assembly of poly(TA) and TA. This study clearly demonstrates that micro‐ and macroscopic bottom‐up self‐assembly can be applied in 3D additive manufacturing. |
format | Online Article Text |
id | pubmed-9685451 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96854512022-11-25 Poly(thioctic acid): From Bottom‐Up Self‐Assembly to 3D‐Fused Deposition Modeling Printing Cai, Changyong Wu, Shuanggen Zhang, Yunfei Li, Fenfang Tan, Zhijian Dong, Shengyi Adv Sci (Weinh) Research Articles Inspired by the bottom‐up assembly in nature, an artificial self‐assembly pattern is introduced into 3D‐fused deposition modeling (FDM) printing to achieve additive manufacturing on the macroscopic scale. Thermally activated polymerization of thioctic acid (TA) enabled the bulk construction of poly(TA), and yielded unique time‐dependent self‐assembly. Freshly prepared poly(TA) can spontaneously and continuously transfer into higher‐molecular‐weight species and low‐molecular‐weight TA monomers. Poly(TA) and the newly formed TA further assembled into self‐reinforcing materials via microscopic‐phase separation. Bottom‐up self‐assembly patterns on different scales are fully realized by 3D FDM printing of poly(TA): thermally induced polymerization of TA (microscopic‐scale assembly) to poly(TA) and 3D printing (macroscopic‐scale assembly) of poly(TA) are simultaneously achieved in the 3D‐printing process; after 3D printing, the poly(TA) modes show mechanically enhanced features over time, arising from the microscopic self‐assembly of poly(TA) and TA. This study clearly demonstrates that micro‐ and macroscopic bottom‐up self‐assembly can be applied in 3D additive manufacturing. John Wiley and Sons Inc. 2022-10-11 /pmc/articles/PMC9685451/ /pubmed/36220340 http://dx.doi.org/10.1002/advs.202203630 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Cai, Changyong Wu, Shuanggen Zhang, Yunfei Li, Fenfang Tan, Zhijian Dong, Shengyi Poly(thioctic acid): From Bottom‐Up Self‐Assembly to 3D‐Fused Deposition Modeling Printing |
title | Poly(thioctic acid): From Bottom‐Up Self‐Assembly to 3D‐Fused Deposition Modeling Printing |
title_full | Poly(thioctic acid): From Bottom‐Up Self‐Assembly to 3D‐Fused Deposition Modeling Printing |
title_fullStr | Poly(thioctic acid): From Bottom‐Up Self‐Assembly to 3D‐Fused Deposition Modeling Printing |
title_full_unstemmed | Poly(thioctic acid): From Bottom‐Up Self‐Assembly to 3D‐Fused Deposition Modeling Printing |
title_short | Poly(thioctic acid): From Bottom‐Up Self‐Assembly to 3D‐Fused Deposition Modeling Printing |
title_sort | poly(thioctic acid): from bottom‐up self‐assembly to 3d‐fused deposition modeling printing |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685451/ https://www.ncbi.nlm.nih.gov/pubmed/36220340 http://dx.doi.org/10.1002/advs.202203630 |
work_keys_str_mv | AT caichangyong polythiocticacidfrombottomupselfassemblyto3dfuseddepositionmodelingprinting AT wushuanggen polythiocticacidfrombottomupselfassemblyto3dfuseddepositionmodelingprinting AT zhangyunfei polythiocticacidfrombottomupselfassemblyto3dfuseddepositionmodelingprinting AT lifenfang polythiocticacidfrombottomupselfassemblyto3dfuseddepositionmodelingprinting AT tanzhijian polythiocticacidfrombottomupselfassemblyto3dfuseddepositionmodelingprinting AT dongshengyi polythiocticacidfrombottomupselfassemblyto3dfuseddepositionmodelingprinting |