Cargando…
Revealing An Intercalation‐Conversion‐Heterogeneity Hybrid Lithium‐Ion Storage Mechanism in Transition Metal Nitrides Electrodes with Jointly Fast Charging Capability and High Energy Output
The performance of electrode materials depends intensively on the lithium (Li)‐ion storage mechanisms correlating ultimately with the Coulombic efficiency, reversible capacity, and morphology variation of electrode material upon cycling. Transition metal nitrides anode materials have exhibited high‐...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685454/ https://www.ncbi.nlm.nih.gov/pubmed/36202622 http://dx.doi.org/10.1002/advs.202203895 |
_version_ | 1784835509375205376 |
---|---|
author | Li, Fei Li, Yadong Zhao, Linyi Liu, Jie Zuo, Fengkai Gu, Fangchao Liu, Hengjun Liu, Renbin Li, Yuhao Zhan, Jiqiang Li, Qiang Li, Hongsen |
author_facet | Li, Fei Li, Yadong Zhao, Linyi Liu, Jie Zuo, Fengkai Gu, Fangchao Liu, Hengjun Liu, Renbin Li, Yuhao Zhan, Jiqiang Li, Qiang Li, Hongsen |
author_sort | Li, Fei |
collection | PubMed |
description | The performance of electrode materials depends intensively on the lithium (Li)‐ion storage mechanisms correlating ultimately with the Coulombic efficiency, reversible capacity, and morphology variation of electrode material upon cycling. Transition metal nitrides anode materials have exhibited high‐energy density and superior rate capability; however, the intrinsic mechanism is largely unexplored and still unclear. Here, a typical 3D porous Fe(2)N micro‐coral anode is prepared and, an intercalation–conversion–heterogeneity hybrid Li‐ion storage mechanism that is beyond the conventional intercalation or conversion reaction is revealed through various characterization techniques and thermodynamic analysis. Interestingly, using advanced in situ magnetometry, the ratio (ca. 24.4%) of the part where conversion reaction occurs to the entire Fe(2)N can further be quantified. By rationally constructing a Li‐ion capacitor comprising 3D porous Fe(2)N micro‐corals anode and commercial AC cathode, the hybrid full device delivers a high energy‐density (157 Wh kg(−1)) and high power‐density (20 000 W kg(−1)), as well as outstanding cycling stability (93.5% capacitance retention after 5000 cycles). This research provides an original and insightful method to confirm the reaction mechanism of material related to transition metals and a fundamental basis for emerging fast charging electrode materials to be efficiently explored for a next‐generation battery. |
format | Online Article Text |
id | pubmed-9685454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96854542022-11-25 Revealing An Intercalation‐Conversion‐Heterogeneity Hybrid Lithium‐Ion Storage Mechanism in Transition Metal Nitrides Electrodes with Jointly Fast Charging Capability and High Energy Output Li, Fei Li, Yadong Zhao, Linyi Liu, Jie Zuo, Fengkai Gu, Fangchao Liu, Hengjun Liu, Renbin Li, Yuhao Zhan, Jiqiang Li, Qiang Li, Hongsen Adv Sci (Weinh) Research Articles The performance of electrode materials depends intensively on the lithium (Li)‐ion storage mechanisms correlating ultimately with the Coulombic efficiency, reversible capacity, and morphology variation of electrode material upon cycling. Transition metal nitrides anode materials have exhibited high‐energy density and superior rate capability; however, the intrinsic mechanism is largely unexplored and still unclear. Here, a typical 3D porous Fe(2)N micro‐coral anode is prepared and, an intercalation–conversion–heterogeneity hybrid Li‐ion storage mechanism that is beyond the conventional intercalation or conversion reaction is revealed through various characterization techniques and thermodynamic analysis. Interestingly, using advanced in situ magnetometry, the ratio (ca. 24.4%) of the part where conversion reaction occurs to the entire Fe(2)N can further be quantified. By rationally constructing a Li‐ion capacitor comprising 3D porous Fe(2)N micro‐corals anode and commercial AC cathode, the hybrid full device delivers a high energy‐density (157 Wh kg(−1)) and high power‐density (20 000 W kg(−1)), as well as outstanding cycling stability (93.5% capacitance retention after 5000 cycles). This research provides an original and insightful method to confirm the reaction mechanism of material related to transition metals and a fundamental basis for emerging fast charging electrode materials to be efficiently explored for a next‐generation battery. John Wiley and Sons Inc. 2022-10-06 /pmc/articles/PMC9685454/ /pubmed/36202622 http://dx.doi.org/10.1002/advs.202203895 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Li, Fei Li, Yadong Zhao, Linyi Liu, Jie Zuo, Fengkai Gu, Fangchao Liu, Hengjun Liu, Renbin Li, Yuhao Zhan, Jiqiang Li, Qiang Li, Hongsen Revealing An Intercalation‐Conversion‐Heterogeneity Hybrid Lithium‐Ion Storage Mechanism in Transition Metal Nitrides Electrodes with Jointly Fast Charging Capability and High Energy Output |
title | Revealing An Intercalation‐Conversion‐Heterogeneity Hybrid Lithium‐Ion Storage Mechanism in Transition Metal Nitrides Electrodes with Jointly Fast Charging Capability and High Energy Output |
title_full | Revealing An Intercalation‐Conversion‐Heterogeneity Hybrid Lithium‐Ion Storage Mechanism in Transition Metal Nitrides Electrodes with Jointly Fast Charging Capability and High Energy Output |
title_fullStr | Revealing An Intercalation‐Conversion‐Heterogeneity Hybrid Lithium‐Ion Storage Mechanism in Transition Metal Nitrides Electrodes with Jointly Fast Charging Capability and High Energy Output |
title_full_unstemmed | Revealing An Intercalation‐Conversion‐Heterogeneity Hybrid Lithium‐Ion Storage Mechanism in Transition Metal Nitrides Electrodes with Jointly Fast Charging Capability and High Energy Output |
title_short | Revealing An Intercalation‐Conversion‐Heterogeneity Hybrid Lithium‐Ion Storage Mechanism in Transition Metal Nitrides Electrodes with Jointly Fast Charging Capability and High Energy Output |
title_sort | revealing an intercalation‐conversion‐heterogeneity hybrid lithium‐ion storage mechanism in transition metal nitrides electrodes with jointly fast charging capability and high energy output |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685454/ https://www.ncbi.nlm.nih.gov/pubmed/36202622 http://dx.doi.org/10.1002/advs.202203895 |
work_keys_str_mv | AT lifei revealinganintercalationconversionheterogeneityhybridlithiumionstoragemechanismintransitionmetalnitrideselectrodeswithjointlyfastchargingcapabilityandhighenergyoutput AT liyadong revealinganintercalationconversionheterogeneityhybridlithiumionstoragemechanismintransitionmetalnitrideselectrodeswithjointlyfastchargingcapabilityandhighenergyoutput AT zhaolinyi revealinganintercalationconversionheterogeneityhybridlithiumionstoragemechanismintransitionmetalnitrideselectrodeswithjointlyfastchargingcapabilityandhighenergyoutput AT liujie revealinganintercalationconversionheterogeneityhybridlithiumionstoragemechanismintransitionmetalnitrideselectrodeswithjointlyfastchargingcapabilityandhighenergyoutput AT zuofengkai revealinganintercalationconversionheterogeneityhybridlithiumionstoragemechanismintransitionmetalnitrideselectrodeswithjointlyfastchargingcapabilityandhighenergyoutput AT gufangchao revealinganintercalationconversionheterogeneityhybridlithiumionstoragemechanismintransitionmetalnitrideselectrodeswithjointlyfastchargingcapabilityandhighenergyoutput AT liuhengjun revealinganintercalationconversionheterogeneityhybridlithiumionstoragemechanismintransitionmetalnitrideselectrodeswithjointlyfastchargingcapabilityandhighenergyoutput AT liurenbin revealinganintercalationconversionheterogeneityhybridlithiumionstoragemechanismintransitionmetalnitrideselectrodeswithjointlyfastchargingcapabilityandhighenergyoutput AT liyuhao revealinganintercalationconversionheterogeneityhybridlithiumionstoragemechanismintransitionmetalnitrideselectrodeswithjointlyfastchargingcapabilityandhighenergyoutput AT zhanjiqiang revealinganintercalationconversionheterogeneityhybridlithiumionstoragemechanismintransitionmetalnitrideselectrodeswithjointlyfastchargingcapabilityandhighenergyoutput AT liqiang revealinganintercalationconversionheterogeneityhybridlithiumionstoragemechanismintransitionmetalnitrideselectrodeswithjointlyfastchargingcapabilityandhighenergyoutput AT lihongsen revealinganintercalationconversionheterogeneityhybridlithiumionstoragemechanismintransitionmetalnitrideselectrodeswithjointlyfastchargingcapabilityandhighenergyoutput |