Cargando…
Pre‐Training of Equivariant Graph Matching Networks with Conformation Flexibility for Drug Binding
The latest biological findings observe that the motionless “lock‐and‐key” theory is not generally applicable and that changes in atomic sites and binding pose can provide important information for understanding drug binding. However, the computational expenditure limits the growth of protein traject...
Autores principales: | Wu, Fang, Jin, Shuting, Jiang, Yinghui, Jin, Xurui, Tang, Bowen, Niu, Zhangming, Liu, Xiangrong, Zhang, Qiang, Zeng, Xiangxiang, Li, Stan Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685463/ https://www.ncbi.nlm.nih.gov/pubmed/36202759 http://dx.doi.org/10.1002/advs.202203796 |
Ejemplares similares
-
Pharmacophoric-constrained heterogeneous graph transformer model for molecular property prediction
por: Jiang, Yinghui, et al.
Publicado: (2023) -
HeTDR: Drug repositioning based on heterogeneous networks and text mining
por: Jin, Shuting, et al.
Publicado: (2021) -
Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning
por: Gu, Yaowen, et al.
Publicado: (2023) -
Equivariant
Graph Neural Networks for Toxicity Prediction
por: Cremer, Julian, et al.
Publicado: (2023) -
An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging
por: Gong, Shiqi, et al.
Publicado: (2022)