Cargando…
Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries
Designing dense thick sulfur cathodes to gain high‐volumetric/areal‐capacity lithium–sulfur batteries (LSBs) in lean electrolytes is extremely desired. Nevertheless, the severe Li(2)S clogging and unclear mechanism seriously hinder its development. Herein, an integrated strategy is developed to mani...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685476/ https://www.ncbi.nlm.nih.gov/pubmed/36202626 http://dx.doi.org/10.1002/advs.202204192 |
_version_ | 1784835514997669888 |
---|---|
author | Shan, Jiongwei Wang, Wei Zhang, Bing Wang, Xinying Zhou, Weiliang Yue, Liguo Li, Yunyong |
author_facet | Shan, Jiongwei Wang, Wei Zhang, Bing Wang, Xinying Zhou, Weiliang Yue, Liguo Li, Yunyong |
author_sort | Shan, Jiongwei |
collection | PubMed |
description | Designing dense thick sulfur cathodes to gain high‐volumetric/areal‐capacity lithium–sulfur batteries (LSBs) in lean electrolytes is extremely desired. Nevertheless, the severe Li(2)S clogging and unclear mechanism seriously hinder its development. Herein, an integrated strategy is developed to manipulate Li(2)S redox kinetics of CoP/MXene catalyst via electron‐donor Cu doping. Meanwhile a dense S/Cu(0.1)Co(0.9)P/MXene cathode (density = 1.95 g cm(−3)) is constructed, which presents a large volumetric capacity of 1664 Ah L(−1) (routine electrolyte) and a high areal capacity of ≈8.3 mAh cm(−2) (lean electrolyte of 5.0 µL mg(s) (−1)) at 0.1 C. Systematical thermodynamics, kinetics, and theoretical simulation confirm that electron‐donor Cu doping induces the charge accumulation of Co atoms to form more chemical bonding with polysulfides, whereas weakens Co—S bonding energy and generates abundant lattice vacancies and active sites to facilitate the diffusion and catalysis of polysulfides/Li(2)S on electrocatalyst surface, thereby decreasing the diffusion energy barrier and activation energy of Li(2)S nucleation and dissolution, boosting Li(2)S redox kinetics, and inhibiting shuttling in the dense thick sulfur cathode. This work deeply understands the atomic‐level manipulation mechanism of Li(2)S redox kinetics and provides dependable principles for designing high‐volumetric‐energy‐density, lean‐electrolyte LSBs through integrating bidirectional electro‐catalysts with manipulated Li(2)S redox and dense‐sulfur engineering. |
format | Online Article Text |
id | pubmed-9685476 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96854762022-11-25 Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries Shan, Jiongwei Wang, Wei Zhang, Bing Wang, Xinying Zhou, Weiliang Yue, Liguo Li, Yunyong Adv Sci (Weinh) Research Articles Designing dense thick sulfur cathodes to gain high‐volumetric/areal‐capacity lithium–sulfur batteries (LSBs) in lean electrolytes is extremely desired. Nevertheless, the severe Li(2)S clogging and unclear mechanism seriously hinder its development. Herein, an integrated strategy is developed to manipulate Li(2)S redox kinetics of CoP/MXene catalyst via electron‐donor Cu doping. Meanwhile a dense S/Cu(0.1)Co(0.9)P/MXene cathode (density = 1.95 g cm(−3)) is constructed, which presents a large volumetric capacity of 1664 Ah L(−1) (routine electrolyte) and a high areal capacity of ≈8.3 mAh cm(−2) (lean electrolyte of 5.0 µL mg(s) (−1)) at 0.1 C. Systematical thermodynamics, kinetics, and theoretical simulation confirm that electron‐donor Cu doping induces the charge accumulation of Co atoms to form more chemical bonding with polysulfides, whereas weakens Co—S bonding energy and generates abundant lattice vacancies and active sites to facilitate the diffusion and catalysis of polysulfides/Li(2)S on electrocatalyst surface, thereby decreasing the diffusion energy barrier and activation energy of Li(2)S nucleation and dissolution, boosting Li(2)S redox kinetics, and inhibiting shuttling in the dense thick sulfur cathode. This work deeply understands the atomic‐level manipulation mechanism of Li(2)S redox kinetics and provides dependable principles for designing high‐volumetric‐energy‐density, lean‐electrolyte LSBs through integrating bidirectional electro‐catalysts with manipulated Li(2)S redox and dense‐sulfur engineering. John Wiley and Sons Inc. 2022-10-06 /pmc/articles/PMC9685476/ /pubmed/36202626 http://dx.doi.org/10.1002/advs.202204192 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Shan, Jiongwei Wang, Wei Zhang, Bing Wang, Xinying Zhou, Weiliang Yue, Liguo Li, Yunyong Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries |
title | Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries |
title_full | Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries |
title_fullStr | Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries |
title_full_unstemmed | Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries |
title_short | Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries |
title_sort | unraveling the atomic‐level manipulation mechanism of li(2)s redox kinetics via electron‐donor doping for designing high‐volumetric‐energy‐density, lean‐electrolyte lithium–sulfur batteries |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685476/ https://www.ncbi.nlm.nih.gov/pubmed/36202626 http://dx.doi.org/10.1002/advs.202204192 |
work_keys_str_mv | AT shanjiongwei unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries AT wangwei unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries AT zhangbing unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries AT wangxinying unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries AT zhouweiliang unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries AT yueliguo unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries AT liyunyong unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries |