Cargando…

Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries

Designing dense thick sulfur cathodes to gain high‐volumetric/areal‐capacity lithium–sulfur batteries (LSBs) in lean electrolytes is extremely desired. Nevertheless, the severe Li(2)S clogging and unclear mechanism seriously hinder its development. Herein, an integrated strategy is developed to mani...

Descripción completa

Detalles Bibliográficos
Autores principales: Shan, Jiongwei, Wang, Wei, Zhang, Bing, Wang, Xinying, Zhou, Weiliang, Yue, Liguo, Li, Yunyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685476/
https://www.ncbi.nlm.nih.gov/pubmed/36202626
http://dx.doi.org/10.1002/advs.202204192
_version_ 1784835514997669888
author Shan, Jiongwei
Wang, Wei
Zhang, Bing
Wang, Xinying
Zhou, Weiliang
Yue, Liguo
Li, Yunyong
author_facet Shan, Jiongwei
Wang, Wei
Zhang, Bing
Wang, Xinying
Zhou, Weiliang
Yue, Liguo
Li, Yunyong
author_sort Shan, Jiongwei
collection PubMed
description Designing dense thick sulfur cathodes to gain high‐volumetric/areal‐capacity lithium–sulfur batteries (LSBs) in lean electrolytes is extremely desired. Nevertheless, the severe Li(2)S clogging and unclear mechanism seriously hinder its development. Herein, an integrated strategy is developed to manipulate Li(2)S redox kinetics of CoP/MXene catalyst via electron‐donor Cu doping. Meanwhile a dense S/Cu(0.1)Co(0.9)P/MXene cathode (density = 1.95 g cm(−3)) is constructed, which presents a large volumetric capacity of 1664 Ah L(−1) (routine electrolyte) and a high areal capacity of ≈8.3 mAh cm(−2) (lean electrolyte of 5.0 µL mg(s) (−1)) at 0.1 C. Systematical thermodynamics, kinetics, and theoretical simulation confirm that electron‐donor Cu doping induces the charge accumulation of Co atoms to form more chemical bonding with polysulfides, whereas weakens Co—S bonding energy and generates abundant lattice vacancies and active sites to facilitate the diffusion and catalysis of polysulfides/Li(2)S on electrocatalyst surface, thereby decreasing the diffusion energy barrier and activation energy of Li(2)S nucleation and dissolution, boosting Li(2)S redox kinetics, and inhibiting shuttling in the dense thick sulfur cathode. This work deeply understands the atomic‐level manipulation mechanism of Li(2)S redox kinetics and provides dependable principles for designing high‐volumetric‐energy‐density, lean‐electrolyte LSBs through integrating bidirectional electro‐catalysts with manipulated Li(2)S redox and dense‐sulfur engineering.
format Online
Article
Text
id pubmed-9685476
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-96854762022-11-25 Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries Shan, Jiongwei Wang, Wei Zhang, Bing Wang, Xinying Zhou, Weiliang Yue, Liguo Li, Yunyong Adv Sci (Weinh) Research Articles Designing dense thick sulfur cathodes to gain high‐volumetric/areal‐capacity lithium–sulfur batteries (LSBs) in lean electrolytes is extremely desired. Nevertheless, the severe Li(2)S clogging and unclear mechanism seriously hinder its development. Herein, an integrated strategy is developed to manipulate Li(2)S redox kinetics of CoP/MXene catalyst via electron‐donor Cu doping. Meanwhile a dense S/Cu(0.1)Co(0.9)P/MXene cathode (density = 1.95 g cm(−3)) is constructed, which presents a large volumetric capacity of 1664 Ah L(−1) (routine electrolyte) and a high areal capacity of ≈8.3 mAh cm(−2) (lean electrolyte of 5.0 µL mg(s) (−1)) at 0.1 C. Systematical thermodynamics, kinetics, and theoretical simulation confirm that electron‐donor Cu doping induces the charge accumulation of Co atoms to form more chemical bonding with polysulfides, whereas weakens Co—S bonding energy and generates abundant lattice vacancies and active sites to facilitate the diffusion and catalysis of polysulfides/Li(2)S on electrocatalyst surface, thereby decreasing the diffusion energy barrier and activation energy of Li(2)S nucleation and dissolution, boosting Li(2)S redox kinetics, and inhibiting shuttling in the dense thick sulfur cathode. This work deeply understands the atomic‐level manipulation mechanism of Li(2)S redox kinetics and provides dependable principles for designing high‐volumetric‐energy‐density, lean‐electrolyte LSBs through integrating bidirectional electro‐catalysts with manipulated Li(2)S redox and dense‐sulfur engineering. John Wiley and Sons Inc. 2022-10-06 /pmc/articles/PMC9685476/ /pubmed/36202626 http://dx.doi.org/10.1002/advs.202204192 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Shan, Jiongwei
Wang, Wei
Zhang, Bing
Wang, Xinying
Zhou, Weiliang
Yue, Liguo
Li, Yunyong
Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries
title Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries
title_full Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries
title_fullStr Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries
title_full_unstemmed Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries
title_short Unraveling the Atomic‐Level Manipulation Mechanism of Li(2)S Redox Kinetics via Electron‐Donor Doping for Designing High‐Volumetric‐Energy‐Density, Lean‐Electrolyte Lithium–Sulfur Batteries
title_sort unraveling the atomic‐level manipulation mechanism of li(2)s redox kinetics via electron‐donor doping for designing high‐volumetric‐energy‐density, lean‐electrolyte lithium–sulfur batteries
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685476/
https://www.ncbi.nlm.nih.gov/pubmed/36202626
http://dx.doi.org/10.1002/advs.202204192
work_keys_str_mv AT shanjiongwei unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries
AT wangwei unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries
AT zhangbing unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries
AT wangxinying unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries
AT zhouweiliang unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries
AT yueliguo unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries
AT liyunyong unravelingtheatomiclevelmanipulationmechanismofli2sredoxkineticsviaelectrondonordopingfordesigninghighvolumetricenergydensityleanelectrolytelithiumsulfurbatteries