Cargando…
Machine learning forecasting for COVID-19 pandemic-associated effects on paediatric respiratory infections
OBJECTIVE: The COVID-19 pandemic and subsequent government restrictions have had a major impact on healthcare services and disease transmission, particularly those associated with acute respiratory infection. This study examined non-identifiable routine electronic patient record data from a speciali...
Autores principales: | Bowyer, Stuart A, Bryant, William A, Key, Daniel, Booth, John, Briggs, Lydia, Spiridou, Anastassia, Cortina-Borja, Mario, Davies, Gwyneth, Taylor, Andrew M, Sebire, Neil J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685698/ https://www.ncbi.nlm.nih.gov/pubmed/35948401 http://dx.doi.org/10.1136/archdischild-2022-323822 |
Ejemplares similares
-
Implementation of prognostic machine learning algorithms in paediatric chronic respiratory conditions: a scoping review
por: Filipow, Nicole, et al.
Publicado: (2022) -
Classification Performance of Neural Networks Versus Logistic Regression Models: Evidence From Healthcare Practice
por: Issitt, Richard W, et al.
Publicado: (2022) -
Children with COVID-19 at a specialist centre: initial experience and outcome
por: Issitt, Richard W, et al.
Publicado: (2020) -
Impact of the COVID-19 pandemic on radiology appointments in a tertiary children’s hospital: a retrospective study
por: Langan, Dean, et al.
Publicado: (2021) -
Normal perinatal and paediatric postmortem magnetic resonance imaging appearances
por: Arthurs, Owen J., et al.
Publicado: (2015)