Cargando…
Plant disease symptom segmentation in chlorophyll fluorescence imaging with a synthetic dataset
Despite the wide use of computer vision methods in plant health monitoring, little attention is paid to segmenting the diseased leaf area at its early stages. It can be explained by the lack of datasets of plant images with annotated disease lesions. We propose a novel methodology to generate fluore...
Autores principales: | Sapoukhina, Natalia, Boureau, Tristan, Rousseau, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685808/ https://www.ncbi.nlm.nih.gov/pubmed/36438124 http://dx.doi.org/10.3389/fpls.2022.969205 |
Ejemplares similares
-
Phenoplant: a web resource for the exploration of large chlorophyll fluorescence image datasets
por: Rousseau, Céline, et al.
Publicado: (2015) -
High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis
por: Rousseau, Céline, et al.
Publicado: (2013) -
Phenotyping Plant Responses to Biotic Stress by Chlorophyll Fluorescence Imaging
por: Pérez-Bueno, María Luisa, et al.
Publicado: (2019) -
A Computation Method Based on the Combination of Chlorophyll Fluorescence Parameters to Improve the Discrimination of Visually Similar Phenotypes Induced by Bacterial Virulence Factors
por: Méline, Valérian, et al.
Publicado: (2020) -
Noninvasive Phenotyping of Plant–Pathogen Interaction: Consecutive In Situ Imaging of Fluorescing Pseudomonas syringae, Plant Phenolic Fluorescence, and Chlorophyll Fluorescence in Arabidopsis Leaves
por: Hupp, Sabrina, et al.
Publicado: (2019)