Cargando…
Facial expression recognition based on improved depthwise separable convolutional network
A single network model can’t extract more complex and rich effective features. Meanwhile, the network structure is usually huge, and there are many parameters and consume more space resources, etc. Therefore, the combination of multiple network models to extract complementary features has attracted...
Autores principales: | Huo, Hua, Yu, YaLi, Liu, ZhongHua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686458/ https://www.ncbi.nlm.nih.gov/pubmed/36467439 http://dx.doi.org/10.1007/s11042-022-14066-6 |
Ejemplares similares
-
Underwater Acoustic Target Recognition Based on Depthwise Separable Convolution Neural Networks
por: Hu, Gang, et al.
Publicado: (2021) -
Recognition of Crop Diseases Based on Depthwise Separable Convolution in Edge Computing
por: Gu, Musong, et al.
Publicado: (2020) -
LdsConv: Learned Depthwise Separable Convolutions by Group Pruning
por: Lin, Wenxiang, et al.
Publicado: (2020) -
FPGA Implementation for Odor Identification with Depthwise Separable Convolutional Neural Network
por: Mo, Zhuofeng, et al.
Publicado: (2021) -
WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis
por: Monday, Happy Nkanta, et al.
Publicado: (2022)