Cargando…
Synthesis and Antimicrobial Activity of Sulfenimines Based on Pinane Hydroxythiols
The widespread presence of multidrug-resistant pathogenic microorganisms challenges the development of novel chemotype antimicrobials, insensitive to microbial tools of resistance. To date, various monoterpenoids have been shown as potential antimicrobials. Among many classes of molecules with antim...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686613/ https://www.ncbi.nlm.nih.gov/pubmed/36358203 http://dx.doi.org/10.3390/antibiotics11111548 |
Sumario: | The widespread presence of multidrug-resistant pathogenic microorganisms challenges the development of novel chemotype antimicrobials, insensitive to microbial tools of resistance. To date, various monoterpenoids have been shown as potential antimicrobials. Among many classes of molecules with antimicrobial activity, terpenes and terpenoids are an attractive basis for the design of antimicrobials because of their low toxicity and availability for various modifications. In this work, we report on the synthesis of sulfenimines from chiral trifluoromethylated and non-fluorinated pinane-type thiols. Final compounds were obtained with yields of up to 81%. Among the 13 sulfenimines obtained, 3 compounds were able to repress the growth of both bacteria (S. aureus, both MSSA and MRSA; P. aeruginosa) and fungi (C. albicans) with an MIC of 8–32 µg/mL. Although compounds exhibited relatively high cytotoxicity (the therapeutic index of 3), their chemotype can be used as a starter point for the development of disinfectants and antiseptics for targeting multidrug-resistant pathogens. |
---|