Cargando…

Role of Oxidative Stress and Lipid Peroxidation in the Pathophysiology of NAFLD

Non-alcoholic fatty liver disease (NAFLD) is characterised by an excess of hepatic fat that can progress to steatohepatitis, fibrosis, cirrhosis and hepatocarcinoma. The imbalance between lipid uptake/lipogenesis and lipid oxidation/secretion in the liver is a major feature of NAFLD. Given the lack...

Descripción completa

Detalles Bibliográficos
Autores principales: Martín-Fernández, Marta, Arroyo, Víctor, Carnicero, Carmen, Sigüenza, Rebeca, Busta, Reyes, Mora, Natalia, Antolín, Beatriz, Tamayo, Eduardo, Aspichueta, Patricia, Carnicero-Frutos, Irene, Gonzalo-Benito, Hugo, Aller, Rocío
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686676/
https://www.ncbi.nlm.nih.gov/pubmed/36358589
http://dx.doi.org/10.3390/antiox11112217
Descripción
Sumario:Non-alcoholic fatty liver disease (NAFLD) is characterised by an excess of hepatic fat that can progress to steatohepatitis, fibrosis, cirrhosis and hepatocarcinoma. The imbalance between lipid uptake/lipogenesis and lipid oxidation/secretion in the liver is a major feature of NAFLD. Given the lack of a non-invasive and reliable methods for the diagnosis of non-alcoholic steatohepatitis (NASH), it is important to find serum markers that are capable of discriminating or defining patients with this stage of NASH. Blood samples were obtained from 152 Caucasian subjects with biopsy-proven NAFLD due to persistently elevated liver enzyme levels. Metabolites representative of oxidative stress were assessed. The findings derived from this work revealed that NAFLD patients with a NASH score of ≥ 4 showed significantly higher levels of lipid peroxidation (LPO). Indeed, LPO levels above the optimal operating point (OOP) of 315.39 μM are an independent risk factor for presenting a NASH score of ≥ 4 (OR: 4.71; 95% CI: 1.68–13.19; p = 0.003). The area under the curve (AUC = 0.81, 95% CI = 0.73–0.89, p < 0.001) shows a good discrimination ability of the model. Therefore, understanding the molecular mechanisms underlying the basal inflammation present in these patients is postulated as a possible source of biomarkers and therapeutic targets in NASH.